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THE CONSERVATION EQUATIONS FOR INDEPENDENT COEXISTENT
CONTINUA AND FOR MULTICOMPONENT REACTING GAS MIXTURES*

BT

W. NACHBAR (Lockhead Aircraft Corporation, Missile Systems Division, Palo Alto, Cal.
AND

F. WILLIAMS and S. S. PENNER (California Institute of Technology)

Summary. The equations for conservation of mass, momentum, and energy are
derived for a set of independent, coexistent continua obeying the laws of dynamics and
thermodynamics. The idea of a control volume and a control surface for each continuum
is used in the analysis. The derived results are practically identical with relations obtained
previously by Th. von Karman.

A direct comparison is conducted between the continuum theory results and those
obtained from kinetic theory by assuming that, for each of the species, the kinetic
theory definitions apply. It is found that the new terms appearing in the conservation
equations derived from continuum theory are precisely those which are required to
make these equations identical with the results obtained from the kinetic theory of
multicomponent, reacting gas mixtures. However, the continuum theory forms of the
equations are not useful because they require knowledge of the transport properties
for individual species in the mixture.

I. Introduction. The equations for conservation of mass, momentum, and energy
for a one-component continuum are well known and are derived in standard treatises
on fluid mechanics [1—3]. On the other hand, the conservation equations for reacting,
multicomponent, gas mixtures are generally obtained as the equations of change for
the summational invariants arising in the solution of the Boltzmann equation [4, 5].
One of several exceptions to the last statement is the analysis of von Karman [6] whose
results are quoted in a recently published book [7, 8]. Since von Karman's method of
analysis has not been described in detail, and since his results seem to differ from the
classical relations through the occurrence of higher order terms in the diffusion velocities,
it appeared worthwhile to re-examine this problem with some care.

The objective of our investigation is the derivation of the conservation laws for multi-
component, reacting, gas mixtures. To this end we invent a physical model consistent
with continuum theory. Our model involves the idea of a multicomponent continuum
composed of coexistent continua, each obeying the laws of dynamics and thermody-
namics, a notion which was first introduced by Stefan in 1871 f- For an n-component
gas mixture we presume the existence of n distinct continua within any arbitrary volume,
continuum K corresponding to the chemical species K. We shall use the terms continuum
K, species K, and component K interchangeably, it being understood that each of these
phrases refers to continuum K of the coexistent continua as long as we are following

* Received December 13, 1957. This research was supported by the United States Air Force through
the Air Force Office of Scientific Research of the Air Research and Development Command under
Contract AF 18(603)-146.

f We arrive at the model of simultaneous coexistent continua as the logical transcription to continuum
theory of the fact that the entire volume is accessible to all of the different molecules in a gas mixture.
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the derivation of conservation laws from continuum theory. It is apparent that each
space point in the multicomponent continuum has n velocities vKt{.K = 1,2, • ■ • , n),
one velocity for each of the coexistent continua.

In Sec. II we present relevant definitions and basic mathematical relations, which
will be used in subsequent sections. In Sees. Ill to V we treat, respectively, the equations
for conservation of mass, momentum, and energy. Our results are considered critically
in Sec. VI and are compared with the relations obtained from the kinetic theory of
non-uniform gas mixtures.

II. Definitions and basic mathematical relations. The multicomponent continuum
is considered to be defined in regions of space, every point in a region being an interior
point of the region. All properties of the n continua, including the velocities
vKi{K =1,2, • • • ,ri), are assumed to be described by functions continuously differentiable
in all variables within the region. This statement will be said to define "continuous flow"
for the multicomponent continuum.

The conservation equations for continuous flow of species K will be derived by
using the idea of a control volume rK(t) enclosed by its control surface aK(t), and lying
wholly within a region occupied by the continuum; here "t" denotes the time. The
notation of cartesian tensors will be used*. Let x< (i = 1, 2, 3) denote the cartesian
coordinates of a point in space. In cartesian tensor notation, the divergence theorem
for any scalar function belonging to the Kth continuum aK{x{ , t), becomes

f a.KnKj da = [ aKj dr, (1)
J,K JrK

where nKt denotes the outward normal to the surface aK and a* represents the gradient
of the scalar aK. For any vector function belonging to the /vth continuum, , t),
we have

[ uKjnKj da = [ uf j dr, (2)
J„K JrK

with «,* denoting the divergence of the vector uKs .
Consider that some property of the 2fth continuum has a density per unit volume

equal to aK(x{ , t), and let AK(t) be the amount of this property contained within the
control volume rK. Thus

^1K(0 = f aK(x< , t) dr. (3)
Jtk

For example, if aK = pK = the density of mass of species K, then AK is the total mass
of species K contained within ta. The property aK has a density per unit mass of mixture
equal to /8*(a\- , t) where

aK = p/3K, (4)

with p = PK representing the density of mass for the fluid mixture.
The derivative dAK/dt is defined to mean the time rate of change of AK as the volume

tk and its surface aK move with the flow of species K. Consider that Eq. (3) holds at a
time t0; at time t0 + At the particles in tk at x, will have been displaced to new positions

*Repeated subscript indices imply summation over all allowed values of the indices.
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x\ and will be contained within some new volume rA'(/„ + At) = r'A enclosed by a surface
aK(t0 + A<) = <i'K] in general r'K and a'K are different from rA and aK. Therefore

AK{ta + A<) = f a.K(x'i , t0 + At) dr
JTfK

and

, = 1™ fr.K aK^x>i' to + At^dr ~ Jtk a*(Xi' ^ dr }' ®

It is demonstrated in the appendix that Eq. (5) is equivalent to the relation

Hr= L fe+ (aV^]dr- (6)
Hence, using the divergence theorem given in Eq. (2), it is fouud that

dAK r daK f kk ,~dT = JT*-didr + LaVin<da- (7)
Equation (7) expresses the idea that the time rate of change of AK in a flow, for an arbi-
trary volume tk bounded by a surface <jk, is equal to the stationary rate of change of AK
in the interior of rK plus the rate of change of AK due to the movement of tk and aK.

Equation (6) mav be rewritten in the equivalent form

A
dt (8)

The overall transport equation for the multicomponent continuum is then obtained by
summing over components, a procedure which is in accord with the idea of independent
coexistent continua. We choose at the arbitrary time t all of the control volumes rK to
be coexistent, i.e., tk = t for all K. We will henceforth refer to a volume r thus defined
as being "of the multicomponent continuum" at time t. After summation, Eq. (8) now
becomes

?(!/.,d-L, = /,[!<? *■>+ ? wv»■■]"*■ (9)

III. Continuity equations. We denote by wK the net production of mass of species
K per unit volume per unit time. Since mass is not created or destroyed by chemical
reactions, but only converted from one species to another, it follows that

I/ = 0. (10)
K

The continuity of the mass of species K in an arbitrary volume tk is therefore expressed
by the equation

id.'1""')(n»
where YK is the mass or weight fraction of species K (i.e., p" = pYK and YK equals the
mass of species K in unit mass of mixture). Let /3K = YK in Eq. (8); then Eq. (11) becomes

L[^P+^rv-)-~'"I]d'-0-
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and, since tk is arbitrary, we have

wK = + (pYKvK^.t . (12)dt

Now let v* , the flow velocity for species K, be represented as

VT = V[ + VKi , (13)

where

v[ = E YVt . (14)
K

The summation in Eq. (14) is extended over all n distinct chemical components. Thus
v'i is the mass-weighted average velocity of the fluid mixture, and F* is said to denote
the diffusion velocity of species K. Since

£ YK = 1, (15)
K

it follows from Eqs. (13) and (14) that
£ YkV* = 0. (16)

K

Introducing Eq. (13) into Eq. (12) leads to the following equation for continuity of
species K:

w* = Wt{pYK) + pYKv'i-i + (pYKv^'< > (17)

where

+ as
is the Euler total time derivative following the mass-weighted average motion of the
multicomponent continuum. Summing Eq. (17) over all distinct components, in view
of Eqs. (10), (15) and (16), leads to the overall continuity equation

^ + /»{.« = 0. (19)

Equation (19) is evidently also the correct form of the continuity equation for a one-
component system.

We may now transform Eq. (9) by using Eqs. (18) and (19) to obtain a form which
is useful for the derivation of the differential equations expressing conservation of
momentum and energy, viz.,

(20)

where

P — Z/5*-
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IV. Momentum equations. For an arbitrary volume r of the multicomponent
continuum, the total rate of change of linear momentum in the jth coordinate direction
must equal the sum of the following: (a) the surface integral of the stress vector Zk aiini >
where a* equals* the component in the direction x,■ of the stress vector acting on that
face of an elemental parallelepiped of species K which has outward normal in the direction
Xi ; (b) the volume integral of the total vector body force y\- pKjKi acting on unit volume
of mixture, where is the vector body force per unit mass of species K; and (c) the
volume integral of the total rate of generation of momentum in unit volume through
production of species. Let the rate of generation of momentum in unit volume for species
K be wKmKj , where to* is the average momentum of the generated mass of species K
per unit mass of species K. We postulate that, overall, linear momentum is neither
created nor destroyed by chemical reactions; the consequent conservation principle
states that the total rate of generation of linear momentum per unit volume by chemical
production of species is zero:

Z wKmK, = 0. (21)
K

The total rate of change of linear momentum is then expressed mathematically by

Z(4, [ pYKv« dr) = f Z d* + f Z PKfi dr. (22)
K \&t JrK / tk^t J a K Jt K

Using the divergence theorem, Eq. (1), and the transport relation given in Eq. (20), with

= YKvKj ,

P = V, ,
Eq. (2) becomes

I [p + (p Z FXF*F*)„] dr = f z (<£ , + pKfd dr. (23)
We now define a® , the diffusion stress tensor, as

~ P Z yvw* (24)
K

and fj , the vector body force per unit mass of mixture, as

/,• = Z f,YK. (25)
K

Since r is arbitrary, Eq. (23) then leads to an expression for overall conservation of
momentum, namely,

P 2)7 = P + PV'&'i.i ~ Z aU.i + + Pf> • (26)

If we define as

"a = Z4+ o-" , (27)

*The species vectors <rf; rii and pff represent the sums of all forces which act upon species K and
which move with the velocity of species K in the mixture. These definitions are used in Sec. VI to identify
our results with the results obtained from kinetic theory.
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then Eq. (26) is reduced to the well known form of the momentum equation for one-
component systems. Therefore, <rif is the stress tensor and p/,- is the body force acting
on an elemental parallelepiped which is moving with the mass-weighted average velocity
v' . Furthermore, we can express as a sum of partial stress tensors af-K

= E °VK, (28)
K

where, from Eqs. (24) and (27)
*.K _ K vKjrKfrK<?*■ = <*u — pY V iV i .

Each stress tensor can then always be expressed as the sum of a mean pressure tensor,
a viscous stress tensor, and a viscous diffusion stress tensor; thus,

«r?/* - -VKk, + tJi'K + rf/K , where pK m , (29)

<rn = —p&ij + rj, + t, where p = — . (30)

The total pressure p is the sum of the partial pressures pK for the different species, i.e.,

V = E VK (31)
K

and so, in view of Eq. (28), it follows now that

r7i = 23 rJ;K, (32)
K

t" = Z) (33)
K

The equations of von Karman [6, 7] are obtained by using Eq. (30) in Eq. (26), viz.,
ru.r

p~jy[ ~ ~v.i + (T^ + + pJi ■ (34)

V. Energy equation. For an arbitrary volume t of the multicomponent continuum,
the first law of thermodynamics states that:

Rate of increase of (internal plus kinetic energy) = rate at which work is done
on t by (body forces plus surface stresses) + rate of inward transport of heat by
thermal conduction through the surface a enclosing r + rate of generation of
energy through production of species within r + rate at which work is done on
material produced within r.

Let uK denote the absolute internal energy of species K per unit mass of species K and
let u denote the absolute internal energy per unit mass of mixture. Then

u = X YV. (35)
K

The kinetic energy of species K per unit mass of species K is . The total rate at
which work is done on r by surface stresses and body forces is represented as the super-
position of the rate of work done on the individual continua by their own surface stresses
and body forces.

For the mass wK of species K, which is generated by chemical reaction in unit volume
per unit time, the sum of (a) the internal and kinetic energy carried by this mass, and
(b) the work done on this mass in unit time, is wK(r)K + ^mKjmKj), where i\K is the average
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specific enthalpy of generated mass of species K*. We postulate that, overall, energy
is redistributed among various states but is neither created nor destroyed by chemical
reaction; the consequent conservation principle states that the total rate of generation
of (absolute enthalpy plus kinetic energy) per unit volume by chemical production of
species is zero:

Z wK(yK + = 0. (36)
K

The analytical expression of the first law of thermodynamics, subject to the funda-
mental postulates of independence and conservation, is therefore

5 [ft L PYK(UK + ^ dT\*-r

= Z [" f d<r + f rftf dr 1 — f Z qKini da.
K JT J J9 K

(37)

Here q,■ is the heat flux vector for species K, taken as positive for outwards heat transport.
Equation (37) can be transformed by the use of Eq. (21) with

0* = YV + hYKvYi
and

0 = U + Wi + h Z YKV*V« . (38)
K

Since r is arbitrary, the following differential equation for overall conservation of energy
then results:

P jr. (« + Wv'd + hP jr. (Z YKVK,VKi) + [p Z (JKuKV« + §rV^F*)].,Dt Dt K K (39)

= p Z YKjY, + Z (*&*).< - Z qf.i •
K K K

Let hK denote the absolute specific enthalpy of species K, which is defined as

YKhK = Ykuk + 2— (40)
P

The absolute specific enthalpy of the mixture is then h = Zk YKhK — u + p/p. The
total heat flux vector is assumed to be expressible in the form

z <1* = -XT # , (41)
K

where T is the temperature, and X is the thermal conductivity. Using the definitions
given by Eqs. (29), (30), (40) and (41), Eq. (39) can be written in a desired form, viz.,

P §1 (« + W,) + (p Z WF1).,- = pfjV'j - (pv'dj + t(T<f + rZXh

+ (XT.,.).,- + P Z YKVKjfj + Z l(rJiK + (42)
K K

+ Kp Z - P§-t 11 Z Y*v*tv%
The quantity nK should not be confused with the total (average) specific enthalpy of species K

which we denote by hK, as in Eq. (40).
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Eq. (42) is practically identical with the energy equation derived by von Karman [6, 7].
When the diffusion velocities vanish, Eq. (42) reduces to a well-known form of the energy
equation for one-component systems.

VI. Comparison between the conservation laws derived for independent coexistent
continua and the kinetic theory results for multicomponent gas mixtures. In order
to show that the model of independent, coexistent continua represents correctly a real
mixture of gases composed of different chemical species, we must compare the results
obtained from this model with those of the kinetic theory of non-uniform gas mixtures.
Quantities such as the density p, the mass-weighted average velocity v', and body force
f, , have obviously analogous meanings in both the kinetic theory and the coexistent
continua model. On the other hand, the precise kinetic-theory meaning of terms such
as the stress tensor <r* , the absolute internal energy per unit mass uK, and the heat
flux vector qKf is not immediately apparent. In view of the known success of continuum
theory for one-component systems, we shall identify the continuum theory properties
<rfj, uK, and qKj for species K with their kinetic theory counterparts. Our proof then
involves a comparison between the conservation equations obtained from multicom-
ponent continuum theory, replacing continuum properties for each species by their
kinetic theory definitions, and the conservation equations obtained from the kinetic
theory of non-uniform gas mixtures.

A. Definitions of kinetic theory. Let cf'm be the velocity of a particular molecule, m,
of species K, and let V'K,m be the velocity of this molecule in excess of the velocity u* ,
which is identified in kinetic theory as the mean velocity of all molecules of species K.
Then

ef- = t,* + V'K,m = v; + V* + V'K,m, (cf-m) = v* and (Vf'") = 0,

where the angle brackets indicate an average over all molecules of species K taken with
respect to a distribution function appropriate for the mixture.

From kinetic theory, we have the following definitions1 for the properties of species
K in the mixture

a* = - pK(V?-mVf-m) (43)

uR = + iK-m) = WiK'myf,w) + iK (44)

q« = fiQVf-Vf" + iK-m)Vf,m) = pK{{\V'iK-mVf'mV'iK'm) + (iK"nV'iK-m)). (45)

In Eqs. (44) and (45), uK,m, the total internal energy per unit mass of a molecule of
species K, is expressed as the sum of QVjK'mV'jK'm)1 the peculiar translatory kinetic
energy per unit mass, and (iK,m), the contribution of additional internal energy terms
(rotational, vibrational, etc.) per unit mass. We have then defined uK = (uK,m) and
•K   / •K,m\

i = (i ).

The corresponding definitions in the kinetic theory for the properties of the gas
mixture will be denoted by the superscript T; these are2: the mixture stress tensor <j^ ,
where

'See, for example, Sees. 2.31, 2.4 and 2.45 in [4],
2See, for example, Sec. 2.5 in [4],
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o"- - E PK((Ff- + F*)(Ff- + 71))
K

- - E pW-Ff") - E p*F*F*,
a x

the internal energy per unit mass of mixture uT, where

pwr - E + F^XFJ*" + F*)) + PV]
K

eiS px<Ff,Jr'-F^'") + § E P*F*F* + E pV
X K K

and the heat flux vector for the mixture , where

« / - E p'dKFj'- + Fl)(Ff- + F*) + i'-KF',*- + F*)>
K

= E P*{<iF{*,"F{*'"F;*,"> + IF^FJ'^F,'*-") + F*<Ff •mFJ*,m>
+ WW, + (iK-mV'iK-m) + i*F*}.

(47)

(48)

Using Eqs. (43), (44) and (45) in Eqs. (46), (47) and (48), the following identities are
obtained between the properties , puT and q'] of the gas mixture and the properties
<r* , pKuK and qKj of the individual species:

au = E "u ~ E pKVKiVKj , (49)

Tpu = E pV + h E pKv«v«, (50)

qTi = E - E »«F? + E P*w*F* + § E P*F*F*F* . (51)
K K K K

In each of the above relations, the property for the mixture is equal to the sum, over
all species, of the corresponding property for the components plus various diffusion
terms. The diffusion terms arise because the reference coordinate system for species K
is taken to move with velocity v'- + F* , which is the mass-weighted average velocity for
molecules in species K alone; the reference coordinate system for the mixture on the
other hand is taken to move with velocity v'- , which is the mass-weighted average
velocity for all molecules in the mixture.

B. Comparison of conservation equations. The continuity equation for species K,
as given by Eq. (17), is readily seen to be identical with the corresponding relation in the
kinetic theory for multicomponent gas mixtures if wK is the net mass rate of production
of species K per unit volume by chemical reaction3. Explicit evaluation of wK requires the
introduction of the laws of chemical kinetics4.

The expression for overall conservation of momentum, Eq. (26), is likewise identical
with the corresponding relation in the kinetic theory5, as a comparison of Eqs. (27) and
(49) shows that <ru = <r?- .

'See, for example, Eq. (4) of See. 8.1 in [4], For chemical reactions, the right hand side of this equation
does not vanish but is equal to wK/mK, where mK is the mass of a molecule of species K.

4See, for example, Chap. I in [7].
6See, for example, Eq. (7) of Sec. 8.1 in [4].
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To demonstrate the equivalence of the energy conservation equations, we rewrite
Eq. (39) in the form

p §1 [Z (YV + \YKVKjVKi) + Wi]

+ (pE YW*).,- = pfjV'i + P E YKfiVK
K K

+ (Vj XI cr^.i + Z (<fuVKi).i — E lui
K K K

- (pv'i E F*F*F*),( - Kp E fkf*f*f*)„-

(52)

Replacing Ex of, , Ek YKuK and Ek qKj by their kinetic theory equivalents, as given
by Eqs. (49), (50), and (51), Eq. (fi® becomes

P §-t [ur + wy,] = pfiV'i + p E - ql, + (<r^;).4 . (53)

Multiplying the momentum conservation equations by v' and contracting, the following
scalar equation is found:

\pTn = + pl'v'' (54)

Using this relation and Eq. (19), Eq. (53) can be placed in a form which is identical
with the usual form of the result obtained from kinetic theory6, viz.

^(pwr) + puTv'i.i = pE YKfiVKi - qj.j + . (55)

C. Concluding remarks. We have shown that, with proper identifications, the
conservation equations for mass, momentum, and energy which are derived from the
model of independent, coexistent continua (multicomponent continuum) are those
obeyed by real gas mixtures. This conclusion is not surprising, in view of the fact that
the results derived from this model, as well as those obtained from kinetic theory, do
not depend on the forces operative in molecular collisions. The total mass, momentum,
and energy are conserved in collisions; they are summational invariants. One would
expect, in general, that the independent, coexistent continua model will give the correct
conservation equations for summational invariants.

However, apart from extending the one-component continuum results in a natural
way to the flow of reacting mixtures, the multicomponent continuum model does not
lead to any new results which are presently useful. In particular, to express conservation
of energy for the mixture, Eq. (42) requires knowledge of species transport terms uK,
a* and qKj in the mixture; these terms cannot be evaluated by kinetic theory methods.
The mixture transport terms uT, and qTs can be evaluated, however, and therefore
it is Eq. (55), or an equivalent form, which must be used to express energy conservation
for the mixture.

•See, for example, the equation preceding Eq. (8) of Sec. 8.1 in [4].
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APPENDIX
Proof of Eq. (6). In order to prove Eq. (6), it is more convenient to work

from Eq. (3) than from the limiting relation given in Eq. (5), and also to introduce the
Lagrangian representation [9], For any continuum K, let the three parameters aK{ identify
the individual point particles of continuum K; for definiteness, suppose that a* are the
spatial coordinates of the particles of continuum K at some fixed time t0 ■ The spatial
coordinates xt for any particle aKf at any time t, t > t0 , are then assumed to be given
by the functions* x?K(a* , t) which are taken to be single-valued and at least twice
continuously differentiable with respect to each of their variables:

Xi = xfK(a* , t), t> t0 , (A-l)

and a* = x*{K (a* , t0). The transformations are assumed to be one-to-one, so that the
inverse transformations a* (x,- , t) also exist and are twice continuously differentiable.
The flow velocities or "particle velocities" for continuum K, vfK(aKt , t), are then defined
as:

vfK(a* , t) = = vKi(x,- , t),

where the v* are defined by the inverse transformation. Similarly, the Jacobian of
Eq. (A-l) is given as A** or A*:

A**(a* , t) ^ det = AK(Xj , t). (A-2)

If the integral of Eq. (3) is changed with the use of Eq. (A-l) to an integration at time
t = t„ over the volume t, , then

AK{t) = [ a*K(aKj , t) A** drl . (A-3)
Jt.k

The definition of the time derivative given in Eq. (5) is therefore equivalent to

dAK = r (&c£ , _*KdAl
dt

But it is readily shown that7

dA*K = a*k = VK a*k
dt dXi

and, therefore, Eq (A-4) may be written as

dAK - (a-5)dt

Transformation of Eq. (A-5) to spatial coordinates leads to Eq. (6).

*In this Appendix only, an asterisk on any function indicates that its variables are a,-, t; functions
without asterisks have the independent variables Xi, t.

'See [5], Eq. (7.07).
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