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THE THICKNESS OF CYLINDRICAL SHOCKS AND THE PLK METHOD*
BT

H. C. LEVEY**
Department of Mathematics, University of Western Australia

Summary. Cylindrical shocks occur when a viscous heat-conducting gas flows
radially in a plane. This is a singular perturbation problem in which the perturbing
parameter is the reciprocal of R. , the Reynolds number of the flow. It is shown that for
both inward facing shocks (source flow) and outward facing shocks (sink flow) the
shock thickness is of order R'^S'1 log (R,S3) where S is the shock strength. This is
contrary to results for sink flow which have been obtained by the use of Lighthill's
technique for rendering approximations uniformly valid—the PLK method. It is shown
that this method fails when applied to singular perturbation problems of the type
discussed here in which the small parameter multiplies the highest derivatives.

Introduction. The steady radial two dimensional flow of a viscous heat conducting
gas has attracted some attention in recent years [1, 2, 3]. Perhaps the main interest
has followed from the fact that if an inviscid gas with zero thermal conductivity existed,
it could only flow in such a manner exterior to the sonic circle which is a limiting line
of the flow. Outside the sonic circle the speed could either be supersonic everywhere
to infinity where the vacuum speed is attained or subsonic everywhere to infinity
where the speed is zero. It is apparent that this is a singular perturbation problem
because the flow of a real gas in the limit of vanishing viscosity and thermal conductivity
should not have this character.

Since there is only one independent variable for this simple configuration a treatment
of the problem is feasible. A Reynolds number Re may be defined in terms of the mass
flow and the viscosity, and the solutions sought when Re is large and the Prandtl number,
<r, is finite.

It has been shown by the writer [2] that when the gas flows outwards, source flow,
the limit of the solutions as Re —> » exhibit no ambiguities. Although there is a singular
stagnation circle, the "source", which falls outside the scope of the Navier-Stokes
equations, the important feature is that a typical solution curve follows the supersonic
branch of the inviscid solution outwards from the sonic circle for some distance (dependent
on external boundary conditions), then crosses via an inward facing cylindrical shock
to the subsonic branch of the inviscid solution to complete its journey to infinity. If R,
is large but finite the shock is not a discontinuity and has a thickness of order
R^S'1 log (R„S3), where S is the shock strength.

More recently Wu [3] has investigated the case of inward flow, sink flow, and finds
an analogous situation. In the limit R, —> . a typical solution curve follows the super-
sonic branch of the inviscid solution from infinity in for some distance, then crosses via
an outward facing cylindrical shock to the subsonic branch of the inviscid solution.
The continuation beyond the sonic circle exhibits a singular vacuum circle, the "sink."
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However he finds that for finite Re an outward facing shock can only be of strength of
order R11'3 and have a thickness of order R72/3.

Although it would be expected that the results should agree, a proof seems to demand
a discussion of the whole flow field. It is for this reason that the difference is important,
for instead of the topological methods used by the writer, Wu has employed an analytical
method, the PLK method, to investigate the flow field, and this approach has been
endorsed by Tsien [4]. Hence the procedure which will be adopted is to show that these
results are wrong in general, Sec. 2, and to indicate the reasons why invalid results
were obtained, Sec. 3.

The governing equations for the flow are found in suitable form in Sec. 1 and after
a brief consideration of the singularities for the general case, the discussion centres on
the iso-energetic flows, Sec. 2, for a particular value of <r close to f. For this case a topo-
logical discussion of the governing equations is possible, and as has been pointed out
by the writer [2] variations in a will not affect the nature of the results. After a brief
review of source flow, entirely analogous results are derived for sink flow. In particular
it is shown that, generally, the outward facing cylindrical shocks which occur have
a thickness, A, of order R^S'1 log (R. S3), while, in their interior, the maximum non-
dimensional velocity gradient, V, is of order Re S2. It is only for the very weak shocks
for which S is of order R~1/3 that Wu's results, A = 0{R~2/3), V = 0(R~/S), hold,
and these are still covered by the general result. An interesting sidelight here is that
the weakest cylindrical shocks which can occur are of strength of order R~^l/3.

Now Wu's results are obtained from similarity solutions valid for speeds near sonic,
but the essential feature is that the PLK method is used to show that all solution curves
join on to these similarity solutions. Hence it is Ms application of this method, the
Lighthill "technique for rendering approximations uniformly valid" [5], which comes
under fire in Sec. 3.

In Lighthill's expository paper this technique was applied to singular perturbation
problems which arise because singularities are wrongly placed by the zeroth perturbation.
There is no reason a priori to expect that it will be of any use for the different class of
perturbation problems which are singular essentially because the highest order deriva-
tives are dropped in the equations governing the zeroth perturbation, as in our case.
The effect of the highest derivative is felt almost everywhere in this problem, and neither
a conventional perturbation expansion nor a Lighthill perturbation expansion, which
still loses the highest derivative in each perturbation, leads to valid solutions. This is
brought out clearly in Sec. 3. A critical examination of the application of the PLK method
to the sink flow problem is followed by an example of its application to a simpler equation
of the same broad type, for which the explicit solution is known. The manner in which
it fails to provide any improvement to a conventional perturbation expansion is then
easily seen.

The moral, of course, is that it is useless to expect the PLK method to be a panacea
for all singular perturbation troubles. Their nature must be assessed as suitable for the
treatment first, and it is possible that some other applications of the method should
be critically reexamined.

1. The fundamental equations. For purely radial two dimensional flow of a fluid
the speed, u, is only a function of r, the radial distance from the origin. Let p, p, T, fi,
a, R, cv and a denote respectively the pressure, density, temperature, viscosity, Prandtl
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number, gas constant, specific heat at constant pressure and local speed of sound. Then
the equations for the conservation of mass, momentum and energy take the form [2]

pur = k, (a constant), (1.1)

du .dp _ 1 — ( du\ 2]xdu _ 2/u.u _ 2 d_ f fiu\ . .
pU dr dr 3 dr \ dr) r dr r2 3 dr\r )'

and

/ m , 1 , 2 ( du , \ „ du cvixr dT Tk[cpT + - u-j + 3 - + u) - 2fiur - - — — = KI0 . (1.3)

In addition, if the fluid is an ideal gas the thermodynamic variables are related by the
equation of state

V = RpT. (1.4)
By analogy with inviscid flow the constant I0 is essentially positive while k is positive
(negative) for source (sink) flow.

In terms of the non-dimensional variables

w = | u | (2/3/,,) ~1/2, 6 = c„T/I0 , a = Ml + /J)/(3k), (1.5)

with

fi = (y ~ D/(t + 1) = R/(2c, - R), (1.6)
elimination of p and p with the aid of (1.1) and (1.4) yields the two equations

1 + 0 dw d/ jA _ / d2w ,ldi1 __ yA , (dw _ da . .
r dr dr \ivr) "l dr2 r dr r2) \ dr 2r) dr '

and

„ , J-. , a \ 2 3or d6 2ct/3wr dw , ^
+ FTTr -4(i+ffl.*"r+lT, -1- (1-8)

We may regard | a | as the reciprocal of the Reynolds number of the flow.
If a is placed equal to zero, these equations together yield the inviscid approximation

—r{dw/dr) = w( 1 — /3w2)(l — w2)~l (1.9)

in which to = 1 is the sonic speed and w = /3_1/2 is the vacuum speed. The solution of
this equation is

(r/r.) = to-x[(l - /3tu2)/(1 - (1.10)

where r, is the radius of the sonic circle, and shows that external to the sonic circle the
field is doubly covered, so that at each point the speed may be either subsonic or super-
sonic, while inside the sonic circle there is no solution. When r —> <» either w —> 0 or
w -h> /T1/2 (see Fig. 4). Hereafter we shall suppose r to be rendered non-dimensional in
such a manner that the radius of the sonic circle is unity in this corresponding inviscid
flow—this does not alter the form of the equations (1.7) and (1.8).

For simplicity, we shall only consider the flows for which a is constant. This implies
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in particular that the viscosity is independent of the temperature but previous results [2]
suggest that this will not affect the general nature of the conclusions to be drawn. In
this case, if <r takes the particular value <rn where

4<r0 = 3(1 + a/(0 + 1)], (1.11)
it is possible to obtain an energy integral. For if we define

E = e - 1 + /3[1 + a/OS + 1)K, (1.12)
so that 1 + E is essentially the total energy of the flow, Eq. (1.8) yields

E = (1-13)
where C is an arbitrary constant.

Now, consider the equations obtained in terms of the new variable

V = —rdw/dr, (1.14)

so that V is essentially a velocity gradient. They are

aw2V{dV/dw) = aw3 - (1 + p)w2V - wV(dd/dw) + V6 - wd (1.15)
and

(1 + 0)(<? - 1) + 0(1 + 0 + a)w2 + 3a(4o-Y'Vidd/dw) + 2apwV = 0. (1.16)
It may be shown that the singular points of these equations are at w2 = w\ — [0 +
a(l + 20)/(I + 0)]_1 where 6 = 6C = aw2e and V = 0, and at w = 0 where 0=1 and
7 = 0.

In the w-V plane the point w = 0, V = 0 is a double point*, and the possible gradients
there are (dV/dw) = =° and (dV/dw) = 1. For both a > 0 ('source flow) and a < 0
(sink flow), there is only one solution curve of infinite slope through the origin, namely
w = 0. For source flow there is an infinite number of solution curves with (dV/dw) = 1
through the origin, but there is only one solution curve through the origin with this
slope for a < 0.

The singular point at w — wc 4= 0~l/2 (the vacuum speed), V = 0, is a triple point
in general in the sense used above. For the case of source flow, there is one curve through
this point with slope (dV/dw) = , on which (dd/dw) = ah , corresponding to r —> °o
(this is the physically interesting one and corresponds to one branch of the inviscid
solution) while corresponding to r —» 0 there are curves described by

V ~ X3(u> - we) + C | w - wc |x*/x%

e - 6C ~ n3(w - wc) + C[(nt - /li3)/(X2 - X3)] I W - wc I'"7"'

and if C ^ 0,
V ~ X2(w — wcj, 6 — Be ~ n2(w — we), (1-18)

where

X, = (20)/(l - 0) + 0(a), mi = -2pwc + 0(a),
X2 = -(1 + 0)a"1 + 0(1), = 16c0a[3(l + 0) - 4<r(l - 0)]'1 + 0(as),

3X3 = — 4<r(l — 0)a_I + 0(1), 3^3 = [4o-(l — 0) — 3(1 + 0)]w« + 0(a).
"This is used in the sense that there are two possible solution curve gradients through V = w = 0.

(1.17)

(1.19)
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If a — <r0 , then it may be shown that on these curves

Hj ^ cr ,

but from (1.13), in this case

E ~ cr<1+")/°

for all r, which is unacceptable if the inviscid solution is to be a limiting case when
a —> 0 for large r. Hence C = 0, E = 0, and the only curves left are

V ~ X3(w — wc), (r —» 0),

V ~ \i(w — wc), (r —» oo).

On the other hand, for sink flow, this point is again a triple point, but all the curves
through it correspond to r —+ oo. If

4a < 3(1 + /?)/(! - P)
they are

V ~ X,(u> - wc) + (X3 — XOfc, | w — |x,/x' + (X2 — X0fc2 | to — Wc IX,/X",

with ■ (1.20)

6 - ec ~ Mi(w - wc) + 0*, - Hi)k1 \ w - Wc\ X'/Xl + (ji2 - Aljfca I W - W„ I X,/Xl,.

(which corresponds to the supersonic branch of the inviscid curve),

V ~ X3(w — we) + (X2 — \3)Ck2 | w — wc |x*/x",

with ■ (1.21)

d - 9C ~ n3(w — we) + (m2 - n*)Ck2 | w - wc |x,/x',.

and, if k2 9^ 0,

V ~ X2(w — we)

with (1.22)

0 — 6C ~ M2(w ~ wc) •

When a = a0 , Ms = Mi , and we find that

5 ~ C'fc2r-(1^)/Ial for r—>oo.

Again from (1.13) we have

E ~
for all r for which the solution exists and it is tempting to argue that in order to keep E
bounded when r is small and | a \ —> 0 we should put C = 0 and hence k2 = 0. But in
the absence of a general solution it is by no means certain that r is ever less than one on a
solution curve yielding a shock, in fact in the isoenergetic case it is not true anywhere
where the solution has physical meaning.

Thus, while for source flow the special case <r = <x0 yields the result that all flows of
bounded total energy have constant total energy it is possible that for sink flow all
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flows with <r = <?„ have bounded total energy. In order to achieve any simplification
then we will consider only the sink flows with constant total energy and it seems plausible
that the results obtained for this case will be indicative, at least, of those holding for
neighbouring flows—and anyway, they will be sufficient for one of the main purposes
of this paper.

For this particular case, the singular point at w = wc becomes a double point, through
which the solution curves are

V ~ Xj(w - w.) + (X, - XOfc, | w - wc |wx' (1.23)

and

F~X3(ie-0 (1.24)
on both of which

9 - 9C ~ All (w — wc) (1-25)

since now k2 = 0 and /u3 = when a = an .
Note that if the isoenergetic assumption is not made, then from (1.20) there is a

double infinity of curves (involving two arbitrary constants /c, and k2) with slope X, ,
which therefore are asymptotic to the inviscid curve.

2. The isoenergetic flows with a = <r0 . We have now the relation

9 = 1 - /3[1 + a/08 + 1)K (2.1)
and this may be used to eliminate 9 from (1.15) to yield the first order equation

aw2V(dV/dw) = F{1 - [1 - ap/(fi + DKl (2 2)
- W{1 - D8 + «(1 + 2/3)/(l + /3)K).

There is only a trivial loss of accuracy in replacing the coefficients of w2 in the brackets
by 1 and 0 respectively [2], and the equation which will be considered subsequently
becomes

ocw2V(dV/dw) = 7(1 - w2) - w(l - /3w2). (2.3)

If a is placed equal to zero here we obtain the inviscid equation

V = w( 1 - /3w2)(1 - w2)-1, (2.4)

another form of (1.9).
The equation (2.3), although not soluble explicitly, lends itself to a topological

discussion of the solution curves which has been carried out by the writer [2] for the
case of source flow. The solution curves of the equation run as in Fig. 1 and exhibit the
following features. Those of physical interest 'start' from the point w — V = 0 (a stag-
nation point at r = »). A typical curve lies close to the subsonic branch of the inviscid
curve up to some subsonic speed w, say, then rises steeply to a large positive value of V
and returns to the neighbourhood of the supersonic branch of the inviscid curve near
w — Wil which it then follows nearly back to w — 1. Ultimately the solution curve
becomes asymptotic to w = 0 with V —> — °°. In the physical plane the steeply humped
portion of the curve corresponds to a shock of small, but finite, thickness while the part
for which w —» 0 with V —» — » corresponds to a singularity lying close to r = 1 from
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Fig. 1. Source flow: Solution curves in the w-V plane

which the fluid issues with infinite density. Thus in the region of interest we have effec-
tively parts of the in viscid solution branches joined by a shock.

It was shown [2] that for such a typical solution curve, if

(1 - wr1 = °(a~1/3) (2.5)

that is, the shock strength, 1 — Wj. , is of larger order than a1/3 then

A = 0[a( 1 - w0"1 log [(1 - wjV1]] (2.6)

where A is the shock thickness. Furthermore, in the interior of the shock

Fm« = 0[(1 - wOV1]. (2.7)
The case

1 _ Wl = 0(aI/s) (2.8)

was not discussed, but a similarity argument may then be applied and yields the results

A = 0(a2/3), (2.9)

Fm« = 0(oT1/3), (2.10)

consistent with (2.6) and (2.7).
For sink flow, the governing equation is written

| a | w2V{dV/dw) = - F(1 - w2) + w(l - (3w2) (2.11)
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and this lias been discussed in some detail by Wu [3]. The curve of zero slope is the
inviscid solution curve, ©! , given by

V = w( 1 - /3wj2)(1 - w2)'1 (2.12)

and the curve of inflexions, C2 , has the equation

2Vs - w(l + /3w2)V2 + | a I"1 (1 - j8wJ)[7(l - w2) - w( 1 - 0w2)] = 0. (2.13)

Provided that
| l - w |-' = o(a~1/3) (2.14)

e2 has branches given by

V = u>(l - /3w2)( 1 - w2)-[ 1 + o(l)] (2.15)

and

V = ±(1 - Pw2)W2(w2 - l)1/2(2 | a |)_1/2[1 + o(l)], to > 1; (2.16)

while it has infinite slope at

w ~ 1 + 3.2"4/3(l - p),/3 | a |,/s, V (1 - /S)-s/3(4 | a I)"1", (2.17)

and crosses the line w = 1 at

V

Fig. 2. Sink flow: Solution curves in the u>-F plane
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V ~ (1 — jS)2/3(2 | a |)-1/3. (2.18)

Hence the curve runs as shown in Fig. 2. It is easily verified from power series expan-
sions that although the infinite family of solution curves passing through w = /3~1/a
have the same slope 2/3/(1 — 0) [see (1.20)] as Ci and the branch (2.15) of , they
lie initially below both those curves. Thus the solution curves may be sketched into
the figure.

Now consider a typical solution curve from the point w = /3~1/2, V = 0, which
passes through the point P(b, c) on the lowest supersonic branch of the curve of inflexions,
as in Fig. 3, where

i b -11- = 0(i a ra (2.i9)
V

Fig. 3. Sink flow: A typical shock curve in the to-V plane

so that from (2.16)
c = -(1 - pbY\b* - l)1/2(2 | a |)-1/2[1 + 0(1)]. (2.20)

Since P(b, c) is a point of inflexion then the solution curve certainly lies to the right of
its tangent there,

V = c + (62 - 1)6-2 | a I"1 [1 + 6(1 - 0b^c-'ib' - l)-1]^ - b), (2.21)

for w > b, and to the left of this tangent for w < b. On the other hand, on the line PQ,

V = 0 + (b2 ~ l)b~2 I a r1 [1 + HI - 0b2)c-'(b2 - 1)-'](1 - e)(w -b),

0 < € < 1,
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it may be shown that the slope of the solution curves is greater than the slope of the
line for

Wq = b - 3-1/36e(62 - 1) < w < b, (2.23)

hence the solution curve through P cannot cross it in this range and must lie to the right
of PQ.

A repeated application of this kind of reasoning shows that (see Fig. 3)
(i) the curve lies to the left of the line PR, where

MR = 2~1/463/2(l - pbYXtf - l)l/V6)-l/* | a |I/4 (2.24)

and

(RL/ST) = 23/461/2(l - /3b2yu\b2 - 1 )-3/V(6)1/i! I « \w\ (2.25)

where

?(6) = 1 + (1 - 3/?)62 + /364 > 0, (2.26)

and

ST = 6(1 - pb2)(b2 - 1)"'; (2.27)

(ii) the solution curve crosses the w axis at w = d, where

1 - d = 0(6 - 1), (2.28)

and lies to the left of the curve P'Q' which has the equation

V = — 21/2(1 - /3<f)1/2cTI/2 | a |-'2 (w - df2 (2 29)

- 2.3_1(1 - d2)d~2 | a I-1 (w - d),

with
Wq, - d = 6_1rf(l - d2); (2.30)

(iii) the solution curve lies to the left of the line P'R' where

SB' = d( 1 - /3d2)(1 - d2YU2<p{d)'U2 | a |,/2, (2.31)

cL'R'/P'S') = <p{d)U2{ 1 - d2)~3/2 I a |,/2, (2.32)

and
P'S' = d(l - ^d2)(l - d2)'1. (2.33)

Hence the solution curve through P lies close to the inviscid curve for w slightly
greater than 6, from (2.24) and (2.25), and for w slightly greater than d(V > 0), from
(2.31) and (2.32), and between these points, on the whole, the velocity gradient is large.
In fact, the curve in this range represents a shock, and the solution in the r-w plane
is shown in Fig. 4.

We may estimate the shock thickness by means of the bounding curves. For con-
venience, we define the shock thickness as the distance between P and P'. Since

V = —rdw/dr



1959] THICKNESS OF CYLINDRICAL SHOCKS 87

I r
Fig. 4. Sink flow: A typical solution curve in the r-w plane

the preceding results show that log (rP/rP.) is bounded above by

f | V I"1 dwl+ff" I V r dw + (d - b)[min. (| VQ. |, | F0 I)]"1,
Jp' iJq

and below by

a - d) i vA |- + f* i v r1 dw.
It is easily verified that the dominant term in each of these bounds, and hence log (r,,/r [..)*,
is of order

(6 - l)-1 I « I log [(6 - 1)3(1 - /3&2)-1 I a n (2.34)
since (1 — d) is at least of order (b — 1).

Now rP will differ little from the value of r at w = b on the supersonic branch of the
inviscid curve, namely

V1 f(l - ^b2)/(l - jS)]-«-»/W)> (2.35)

so that finally the shock thickness

A = r,. - rP = 0{(6 - l)"1 | a | (1 - gg)

•log [(b - l)3 I a r1 (1 - /362)-1]}.

This result may be used to show that Eq. (1.7) integrated between rP and rP. yields

bd ~ 1 + | a |1/2 2"i/2(1 - pb2)u\b2 - 1)_1/2 (2.37)

which is the Prandtl relation to order | a |1/2.
From (2.21), (2.23) and (2.30) the maximum value of | V \ attained within the shock

lies between \ VA \ and the minimum of j VQ | and | VQ, |, which are all of order

(6 - l)2 | « T1. (2.38)

*To extend this result to the neighbourhood of the inviscid curve near the points L and L', more
precise bounds than those given in (i) and (iii) are needed, but the result (2.34) still stands.
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But we note that at P,

\V\ = 0[(b - 1 ),/J | a T1/2] (2.39)

from (2.20), and hence the shock curve cannot be obtained by a similarity argument.
However, if

(b - 1) = 0(1 a n (2.40)
the above results suggest that

| V I = 0(1 a |-,/3) (2.41)

throughout, and indeed, with the change of variables

V = \ a r1/s V, (2.42)

w - 1 = | a |1/3«, (2.43)

similarity solutions of (2.3) may be obtained [3] to yield shock type curves for which

A = 0(| a T3). (2.44)

But this is obviously a very restricted case, and it is important to investigate the
reason why these were the only solutions obtained by the PLK method.

3. The PLK method. When the governing equations (including boundary con-
ditions) of a problem contain a small parameter, say a, the standard perturbation
technique is to expand each dependent variable as a series in a. The equations for the
yth perturbation are obtained from the coefficients of a in the governing equations—
in particular, the zeroth perturbation satisfies the unperturbed equations.

These perturbations may exhibit, at a point (or on a curve), a singularity which
becomes worse as the order v, increases. If this occurs when there is only a 'slight' differ-
ence between the perturbed and unperturbed equations and in particular, they are of
the same order, Lighthill [5] has shown that in many cases a uniformly valid solution*
may be obtained as follows. Expand also appropriate independent variables as series
in a in terms of new independent variables. The coefficients of a, except for a, are
unknown functions and are used to cancel the worst effect of the singularity, so that in
terms of the new independent variables each perturbation is no more singular than the
preceding one. A transformation back to the original independent variables yields the
uniformly valid solution.

The singular perturbation problems just described are of this nature essentially
because a singularity is incorrectly placed by the unperturbed governing equations
(it may even lie on another sheet of a Riemann surface), and the Lighthill technique
(the PLK method) places the singularity in its correct position. The problem which
concerns us is of the singular perturbation type because the unperturbed equations are
of lower order than the perturbed equations, and are singular at w = 1 whereas the
perturbed equations are singular only at w = 0 and near w = l3~'/2, see, for example,
Eqs. (2.3) and (2.4).

It is this spurious singularity at w = 1 which gives rise to a superficial resemblance

"Though not necessarily to all orders, see Tsien [4], p. 334.
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to the problems treated by Lighthill. An attempt to solve Eqs. (1.7) and (1.8)* by means
of conventional perturbation expansions shows that successive perturbations are more
and more singular at w = 1. Hence, a new variable [3], £, is introduced and the expansions

w>© = £ + | a | Wj© + | a |2 u>2© + • • • , (3.1)

log r = ijo© + | a | Vi(£) + | a |2 172© + • • • , (3.2)

0© = 0o© + | a | 0i© + | a |2 02© + • • • 1 (3.3)

are assumed.
Upon substitution into the differential equations (1.7) and (1.8) and equating co-

efficients of powers of | a |, two differential equations which must be satisfied by wn ,
t)„ and 0„ are obtained, for each r. In particular the zero order equations are

(1 + &)? + W - 0O - M = 0, (3.4)
0O - 1 + pf = 0, (3.5)

provided that t)£(£) ^ 0. The solution for r/0 is

770© = -log? - (2/3)-'(l - 0) log [(1 - ££*)/( 1 - /3)], (3.6)

where the constant of integration is chosen so that y0(w) is the inviscid solution for log r.
The t?„(£) are now determined in turn so that the w„(£) have the lowest possible order of
singularity at £ = 1**. It is found that near £ = 1,

*© = o[(i - r1], %© = oi(i - ©—], t,„© = otd - r3r+2]. (3.7)
Since it is noted that the singularity near w = j8_1/2 cannot be accounted for by the

expansion procedure adopted, the series (3.2) is finally written

log r = 7/0© + | a | %© + • • • + C | 1 - (3.8)

where the last term is obtained from a discussion of the singularities of the isoenergetic
equation.

It is suggested that this expansion is convergent when | 1 — £ | | a \l/3, since
successive terms are of smaller order in | a |, and moreover, that it remains convergent
even when | 1 — £ | = k | a |, where k is indeed of order unity, although only the first
few terms are known explicitly.

Now, it may be verified, at least for the isoenergetic case, that the series obtained
are divergent, even when | 1 — | | » | a |1/3, but the important points can be brought
out much more clearly by the examination of a simpler equation which, while it exhibits
the main features of (2.11), possesses an explicit solution. Consider the equation

a{dy/dx) = — xy — 1 (3.9)
in which a > 0 is a small parameter. The equation has no singularities in the finite
plane, but the equation governing the zeroth perturbation,

xy+ 1 = 0, (3.10)

*The formal development which follows is essentially the same for the general case and the iso-
energetic case, except for the term with arbitrary constant in (3.8).

**It would seem equally plausible to determine the wn so that the r/„ are no more singular than
170 but no essential difference results.



90 H. C. LEVEY [Vol. XVII, No. 1

obtained by placing a equal to zero, is an equation of lower order than (3.9) and is
singular at a; = 0.

The solution curves of (3.9) are sketched in Fig. 5 and it is seen that for y < 0 their
general character resembles those of (2.11). The point x = <» corresponds to w = /3~1/2
and the curve

y = -X'1 (3.11)

corresponds to the in viscid curve (2.12).

Fig. 5. The solution curves of ay' = — xy — 1.

An attempt to solve (3.9) formally by means of an expansion of the form

y = Vo(x) + ay! 0c) + • • • (3.12)
leads to

y = -aT1 - ocx'3 - ••• - 1-3-5 • • • (2n - l)anx~"~l ••• , (3.13)

which is divergent, successive terms being more and more singular at x — 0. The exact
solution of the equation for the curve which passes through the point x0 , y0 is

y = y0 exp [(x2 — x2)/(2a)] — a'1 exp [—x2/(2a)] f exp [<2/(2a)] dt, (3.14)
J Xo

and it may be verified that (3.13) is the asymptotic expansion of (3.14) for x large enough,
for all x0, yn, but it is not a valid expansion for any solution for all x > 0. In particular
when x = 0(a/2) (note that | 1 — w | = 0(| a |1/3) before), all of the terms in (3.13)
are 0(a~1/2) [note that all terms in (3.2) are of order | a |_1/3], but, it can be verified
from (3.14), the remainder term is also 0(a~~1/2) and becomes infinite with r for any
Xo , y0 ■ Thus the series (3.13) is never an adequate approximation to a solution in the
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critical region when x = 0(a1/2). (The addition of a term [exp ( — x2/(2a)] does not
improve matters).

Now apply the PLK method to this equation. A new independent variable is chosen
so that

x = £ + <*Xi(Q + <x2x2(j-) + • • • (3.15)

and it is assumed that

y = 2/o(£) + «2/i(l) + «22/2© + • • • • (3.16)
The £„(£) are to be determined successively so that the ?y»(£) are no more singular than
2/o(£) at £ = 0. The substitution of these expansions into (3.9) yields the equations

£2/o + 1 = 0, (3.17)

fe/o + l)x( + x,y0 + £j/i = —y'a , (3.18)

(£?/o + l)x2 + (xjt/o + £2/1)^1' + £2/2 + x^tjx + x2y„ = —y[ , . (3.19)

It is possible to annihilate all of the yn for n > 1 by suitable choice of the xn to obtain
the formal solution

2/ = (3.20)
x = £ + a£_1 + a2£"3 + ■ • • + a„aT2"+I + • • ■ , (3.21)

where

= (4m - 2)^ a2m-1-.a,+1 + m >2,
(3.22)

0*2 ,+1 = 4m ^2 a2m_,as+1 , m > 1.

It follows from the last relations that

an > 2"-\n - 1)!, n > 2, (3.23)

so that the series (3.21) is certainly divergent, in fact, "more" divergent than (3.13),
and the successive terms are more and more singular at £ = 0. The series does not enable
the neighbourhood x = 0(a:/2) to be approached, and all that has been achieved by
the PLK method is the exchange of an invalid expansion of one variable for an invalid
expansion of the other. The crucial point is that the small parameter multiplies the
highest derivatives in the differential equation. Therefore the highest derivatives are
dropped in the sequences of equations set up both by the conventional perturbation
analysis and by the PLK method; this is illustrated in (3.17) to (3.19). But the explicit
solution (3.14) shows that the highest derivative in (3.9), despite its small coefficient,
is at least as important as any other term over a large part of the field.

For the cylindrical shock, the situation is similar. In Wu's application [3] of the PLK
method, the highest derivatives are dropped from the sequences of equations, but their
importance is indicated by the topological results, at least for the isoenergetic case, and
it is not surprising, therefore, that the expansions diverge before a neighbourhood of
£ = 1 is reached.

The term in (3.8) with the arbitrary constant serves to represent the effect of the
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highest derivatives in a neighbourhood of f = /3~1/2 for the isoenergetic case [the discus-
sion of the real singularity near w = 0~1/2 in Sec. 1 shows that near £ = 0~l/2, in general,
log r ~ t)o(?) + C | 1 — /3£2 |x'/x' + D | 1 — j3£2 |Xa/Xl], but even with this term, the
expansions are only asymptotic to the solution in that neighbourhood, since the series
diverge just the same.

Seeing that all the terms i?r(£) in the (invalid) expansion (3.8) are 0(| a |2/3) when
| 1 — £ | = 0(| a |l/3), Wu [3] concludes that for all cylindrical shocks, log r = 0(| a |2/3)
when | 1 — £ | = 0(| a |l/3), and he constructs similarity solutions

log r = | « |2/3 $*, (3.24)

w = 1 + | a |V3 w?(!*) + ••• , (3.25)

9 = 1 + | a |,/3 fl(p) + ••• , (3.26)

the validity of which is not contested, in the range

1 - k\a |1/3 < £ < 1 + k | a T3.

The similarity solutions exhibit a shock-like character and imply that across such shocks

Aw = A | a |1/3

and

A log r = B \ a |2/3.

To determine typical values of the constants A and B, Wu [3] takes the divergent
expansion (3.2) to represent the particular solution corresponding to C = 0 in (3.8),
and uses the few terms, which are available, of it and of the corresponding expansions
for w and d to compute values of log r, w and 6 at £ = 1 ± k | a |1/3 to serve as boundary
values of the similarity solution (3.24) to (3.26).

It is understandable that such a procedure can only lead to the selection of a restricted
solution class defined by the similarity assumption. What follows from the existence of
the transonic similarity solutions is that shocks of strength of order | a |l/3 have a thick-
ness of order | a \ 2/3. This restricted class corresponds to the solution curves in Fig. 2
which pass through the curve of inflexions within a distance of order | a |1/3 of its tip.
For the stronger shocks the results (2.36) and (2.38) hold.

It is interesting to note that it is impossible for a cylindrical shock of zero strength
to exist—at least for the isoenergetic case—for there is a continuous transition from
weak shocks with strength 0{\ a |1/3) to 'incomplete' supersonic (subsonic) 'shocks' of
strength 0(\ a |1/3) for sink (source) flow as the point P, Fig. 3, moves along the curve
of inflexions to the tip and back again on the other branch. Thus the weakest shocks
obtained in cylindrical flow have a strength of order | a |1/3.

4. Conclusion. It has been shown, in agreement with the result for inward-facing
cylindrical shocks (source flow), that outward facing cylindrical shocks, (sink flow),
at least for the isoenergetic case, have a thickness given by

A = 0[(S_I | a | log (S3 | « I"1)], (4.1)
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where S is the shock strength and | a | may be regarded as the reciprocal of the Reynolds
number of the flow. The maximum nondimensional velocity gradient within the shock is

(dw/dr)max = 0(iS2 | a |-1). (4.2)

The weakest cylindrical shocks which can occur are of strength
-S = 0(| « |1/3) (4.3)

and then
A = 0(M,/3), (4.4)

(dw/dr)^ = 0(| a |-1/3), (4.5)

in agreement with the results for arbitrary strength. It is only in this case that a similarity
solution can describe the shock interior.

Singular perturbation problems of this type cannot be treated by a straightforward
application of the PLK method. This approachjeads to the invalid result that all cylin-
drical shocks have a strength of order | a |1/3.
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