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I. INTRODUCTION

The stability of a viscous fluid in an insulated vertical tube or between insulated
vertical planes when a negative temperature gradient is maintained in the upward
direction depends on the magnitude of this gradient, the gravity, the geometry of the
solid boundary, the properties of the fluid, and the wave length of the disturbance.
The purpose of this paper is to present the relationships between these variables for
neutral stability, and the results concerning the effect of rotation on stability.

The problem of stability of two superposed fluids in a cylindrical tube with surface
tension at the common interface was solved by Maxwell in [1], without consideration of
viscosity or wall effects. The stability of a layer of viscous fluid between two infinite
horizontal planes when heated from below was investigated by Rayleigh [2], Jeffrey
[3], Low [4], and Pellew and Southwell [5]. The problem under consideration resembles
Maxwell’s in geometry and Rayleigh-Jeffrey’s in the means of producing instability
as well as in the nature of the physical process through which stability is maintained
under certain conditions. This problem has already been considered by Hales [11],
Taylor [12], and Ostrach {13], but only incompletely. The contributions of these authors
will be referred to at the appropriate places in this paper.

As will be seen, the curves for neutral stability differ from those ordinarily obtained
in investigations of hydrodynamic stability in that the critical Rayleigh number occurs
at zero wave number, and hence that these curves have no lower branch.

The “principle of exchange of stabilities”’, which is assumed in many investigations
of hydrodynamic stability but proved only in one instance (Pellew and Southwell, [5]),
has been shown to be valid without general rotation. With the presence of general rotation,
this principle is valid under certain restrictions. The investigation of the effect of rotation
lends some support to the belief that rotation has no effect on the onset of instability.

II. StaBILITY OF FLUID BETWEEN PLANE WALLS

1. Formulation of the problem. If a layer of heat-conducting viscous fluid between
two vertical planes is heated from below, free convection will occur only if the (negative)
temperature gradient in the vertical direction is sufficiently great in magnitude. The
stability of such a fluid layer is discussed in this section.

Using Cartesian coordinates (z, , z; , 3), with z; measured in the upward vertical
direction, one can write the equations of motion as

o, ou;

Sui , o 0ui) —ae — P _9_( duy _
p(aT + U; ax,-) = (Or 0; g)P oz, + oz, P 62;) ) (7' = 1) 2) 3) (1)

in which the summation convention has been used, p is the density, = is the time, g is
the gravitational acceleration, p is the pressure, and » is the kinematic viscosity, which
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is assumed to be constant. The velocity component in the ¢th direction is denoted by
u; , and the three quantities in the parenthesis on the right-hand side of Eq. (1) are
associated with indices 1, 2, and 3, respectively. The equation of continuity is

%, %0, du_
ar T Yoy, TP, =0 @
and the diffusion equation is
T 6_T> ) ( iT_)
p(&r + bt ax,' -k ax,' P Bx,- ’ (3)

in which T is the absolute temperature and « the thermal diffusivity, assumed to be
constant. For moderate temperature differences the equation of state can be approxi-
mated by

p = po[l — (T — Ty)], @

in which T, and p, are the temperature and density, respectively, of the fluid at a point
chosen to be the origin, and « is the thermal expansivity.

If convection is present, the temperature, pressure, and density will differ from
‘their mean values. One can write

T=Tn+T,’
p=p.+7, (5)
p= pn+ o,

in which the subscript m indicates primary quantities and the primes indicate the per-
turbation quantities. For the primary temperature distribution

Tm = TO + sz y (6)
one has, from Eq. (4),

pm = pol — aBzs), @
so that the hydrostatic pressure is given by

2~ —gm(1 — apry). ®)

The thermal expansivity for water under normal conditions is of the order of 0.0001/°F,
that for air is of the order of 0.002/°F. Thus if the maximum temperature difference is
not excessive, the actual change in density is small. It will be assumed here once and for
all that the only effect of density change is on the body force per unit volume due to
gravity—the effect on the inertia or specific heat capacity being neglected. Although
the change in specific weight is small because « is small, it must in no circumstances be
neglected, because this change is the motivating force of any convection, and the sole
cause of instability.

The requirement of small change in density imposed a limitation to the magnitude
of the maximum value of Bz; or of z; . If later one does not hesitate to speak of “zero
wave number,” which corresponds to infinite wave length in the x,-direction, it will be
with the understanding that that term is only a convenient expression for “long wave
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lengths.” As will be seen, the rate of change of the Rayleigh number with wave number
at neutral stability is small when the latter is small, so that the result for “zero wave
number”’ applies rather accurately for long wave lengths.

Under the assumptions made on the effects of the density change, neglecting quadratic
terms of the perturbation quantities, and remembering that the undisturbed state is
one of dynamic and thermal equilibrium, one can write Eqgs. (1) to (3) as

U _ n_19p
ar (07 0, gaT) po O, + vAu, , (9)
ap’ ou;
3~ aBpois + po 5t = 0, (10)
9 ,
(5; — KA)T = —fu;, (11)

in which A is the Laplacian operator in Cartesian coordinates. By virtue of Eq. (4),
Eq. (10) can be written as

aT’ du;
_“(ar +ﬁu3)+5v_,-_0’
which, because of the smallness of the thermal expansivity, becomes
ou;
az, 0. (12)

In other words, the effect of change of density on continuity can be neglected. Eliminating
p’ from the first and third equations contained in Eq. (9), one has,

_6_(%_%)__ /i (éu_n_ﬂ_%)
ar\oz, om) = %%z T ™oz, T o, (13)

For further discussion u, will be assumed to be zero. This does not mean that the
motion under consideration is necessarily two dimensional in the usual sense of the word,
for u, and u; may still depend on z, . If u, is zero, however, the equation of continuity
permits the use of Lagrange’s stream function:

i) a
w=-2¥, w-3L (1)
Thus Eqgs. (11) and (13) can be written as
9 _ ' — _g ¥
(61’ "A)T = "Bz (15)
] T’
(87 - VA)AlP = ga —6;: (16)

If the origin of the coordinates is taken midway between the plates and the half spacing
is denoted by d, the boundary conditions are

T/
‘le -0 at z = -d. (17)

v=0, %=0, and
1
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For convective motion independent of the coordinate x, and periodic in the z;-direction,
one tries solutions of the form

¥ = «f(z) cosaze’™’, (18)

T’ = B8 dé(x) cos aze”*, 19
in which

<

)

’

(x,y,2)=(%,§,%), t=’(‘i

a is the dimensionless wave number, and o (equal to ¢, 4+ is,) is the complex amplifica-
tion factor. Equations (15) and (16) now become

[e — (D* — a]6 = —Df, (20)

[¢ — Pr(D* — a®))(D* — a&”)f = —R Pr Do, (21)

in which D denotes differentiation with respect to z, Pr is the Prandtl number »/x, and
4

R= -2 @22)

Ky
is the Rayleigh number. The boundary conditions are
f=0, Df =0, and D=0 at z = +1. (23)

If u, is zero but the motion is assumed to be periodic both in z, and z, , one tries
solutions of the type

¥ = «xf(z) cos by cosaze’, (24)
T’ = Bd6(z) cos by cosaze'”. (25)
Equations (15) and (16) now have the form
[c — (D* = b* — a")]0 = —Df, (26)
[e — Pr(D* — b* — a®)](D* — b — a®)f = —R Pr D6. @7

The boundary conditions are the same as those for the strictly two-dimensional case,
but the differential equations now correspond to truly cellular convection of a viscous
fluid. Since Eqgs. (26) and (27) would be identical to Egs. (20) and (21) if a® 4 b® were
replaced by a®, the stability or instability against cellular convection can be predicted
from that against the formulation of vortex tubes. This result is similar to that of Squire
[6].

2. Principle of exchange of stabilities. In investigations of hydrodynamic stability
other than that of the Tollmien-Schlichting type, it has often been assumed that the
imaginary part of the factor ¢ is equal to zero as well as the real part at neutral stability.
This is the so-called principle of exchange of stabilities. Only in the case of thermal
instability of a viscous fluid between horizontal plates has it been rigorously proved
(Pellew and Southwell, [5]). This principle will now be proved for the problem formulated
in the last section, but without any assumption concerning boundary geometry.
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If the velocity and the pressure are assumed to be periodic vertically, and if
u;, = U™, p’ = Pe”, T’ = 6¢", (28)

the proof can be achieved by the use of Green’s theorems:

f f m.F; dS = ff ';’; ‘v, (29)

ffF%%dS= fff (grad m-(grada)dv+fffFAGdV, (30)

in which m, are the direction cosines of the outwardly drawn normal to the surface S
enclosing a cellular space, and n is the distance along this normal. Multiplying Eq. (9)
by u* , summing over 7, and utilizing Eq. (12), one has

aJo=gaH—-:—°f[f§(—%f2dV+vf{f UsAU, dV, 31)

in which

Jo=ff UUrdv, H= fff 8UE dV.
\ 4 14

The second integral on the right-hand side of Eq. (31) is, by Green’s first theorem, equal to
[[ mpUz as,
8

which is zero because on the solid boundary U#* is zero and the quantity PU¥ is periodic
in z; , the volume V being a cellular space of the convection. The third integral on the
right-hand side is, for the same reasons and by virtue of Green’s second theorem,

—fff (grad Uy)(grad U*) dV = —J, (say).
Thus Eq. (31) can be written as
oJo +vJ, = gaH. (32)

If now Eq. (11) is multiplied by 7"* and integrated, one has, by Green’s second theorem
and because of periodicity and the insulation of the wall,

O'Io + KI] = _ﬂH* (33)

in which

L,=ff 86* AV, 1,=ff | grad 6 |* dV.
v v

From Eqgs. (32) and (33) it follows that
—B(O'*Jo + VJI) = ga(vfo + KII),
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or

o.(galo + BJo) + gaxl, + BvJ, = 0. (34)

oi(gady — BJo) = 0. (35)

From Eq. (35) one concludes that if ¢; is not zero 8 must be positive. If so, from Eq.
(34) o, must be negative and the fluid stable—as is also to be expected from the physical
point of view. Thus, under the restrictions of periodicity in the vertical direction and
of infinitesimal disturbances, the principle of exchange of stabilities is valid for a viscous
fluid contained in an insulated tube and heated from below.

If there are two horizontal planes intersecting the tube just considered, which are
kept at constant temperatures to create a temperature gradient 8, periodicity in the
zs-direction is no longer necessary for the proof, because the integral involving the
pressure in Eq. (31) now vanishes on account of the vanishing of the velocity components
on a solid boundary. Since the temperature fluctuations on the horizontal plates are
zero, the proof presented in the last paragraph remains valid.

3. Solution of the differential system governing stability. The differential system
consisting of Egs. (20), (21), and (23) will now be solved. Since the principle of exchange
of stabilities is valid, for neutral stability one needs only to consider the system (with
h = R9).

(D* — @’k = R Df, (36)

(D* — a*?f = Dh, 37
f=0 and Df=0 at z = +1, (38)
Dh =0 at z = =+1. (39)
Differentiating Eq. (36) and substituting Eq. (37) into the result, one has
(D* — a)’f = R D*f, (40)
with the boundary conditions

f=0, Df =0, (D> —a®»f=0 at z = =*1. (41)

Equations (40) can be written in the form
(L) —RL — R)f =0, (L=D"-2ad). 42)

The solution of the indicial equation

m* — Rm — Ra®> = 0

b w

o _ 30°8/R)” & (TR™'a' — 4"
- : .

is

in which

(44)



1959] THERMAL INSTABILITY OF VISCOUS FLUIDS 31

Only one of the two signs need be taken, and either one can be taken. If the three roots
of m are denoted by

m; = w; — a’, (t=1,2,3) (45)

which may be complex, the solutions of Eq. (42) are exponential functions with exponents
+w;z. The form of Eq. (40) permits one to resolve the problem into two parts—in the
one f is even, and in the other f is odd. The solutions for even f are cosh w;x and those
for odd f are sinh w,z. The secular equation obtained from the boundary conditions and
determining the relationship between a and R is, if f is even,

cosh w, cosh w, cosh w;
Wy Sinh W Wo Sinh W w3 Sinh w3 =0 (46)
m? cosh w;, m? cosh w, m2 cosh w;

which, though complex as it stands, is only one real equation, on account of either the
conjugacy of the two complex roots of m, or the fact that the three roots are all not
complex. The secular equation for odd f is similar to Eq. (46), the only difference being
that the symbols cosh and sinh are exchanged.
It can be readily shown that
% g I G =1,2,3)

contain the factor a, hence vanish as a vanishes. To find the minimum Rayleigh number,
one differentiates Eq. (46) or the corresponding equation for odd f with respect to a
and sets the derivative dR/da to zero. Thus, for the critical condition and as far as the
first derivative, R can be considered as a constant and all differentiations with respect
to a can be considered as ordinary differentiations. After differentiating Eq. (46) or the
corresponding equation for odd f, one obtains three determinants having one row with
its three members containing the factors

9w Owy duwy gmy dm, Imq

9a "9a’3a * 9a ' 9a ' da ’

respectively. Since these vanish for a equal to zero, the minimum Rayleigh number
corresponds to zero wave number in the direction of gravitation—the possibility of a
maximum being ruled out by physical considerations.

The task of finding the minimum Rayleigh number is now very much lightened.
One may set a equal to zero forthwith and solve the differential system directly. The
equation to be solved is now

(D* — R D)f =0, 47
with boundary conditions
f=0, Df = 0, D'f =0 at z = =+lI. (48)

For antisymmetric motion (even f), the solution can be shown by a direct calculation
to be

—tan R"* = tanh R'*,



32 CHIA-SHUN YIH [Vol. XVII, No. 1

with
™ 174
3 <R”" <=
Thus
R)* = 2.365, R,, = 31.29 (49)

for even f. After the writer found this number, he was informed by Dr. G. K. Batchelor
that Sir Geoffrey Taylor already possessed it in 1953, though he never published it.
The equation leading to this number was also found by Ostrach for different boundary
conditions.

For symmetric motion (odd f), the solution is

tan R"* = tanh R'*
with
r < R < 3x/2.
Thus, approximately,

Ry =2 =302, R, =276 (50)
which, it must be remembered, is based on half of the spacing of the plates. This Ray-

leigh number was given specifically as the critical one for the stated problem by Ostrach
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Fia. 1. Approximate and exact neutral-stability curves for antisymmetric convection between plane
boundaries.
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Fia. 2. Approximate and exact neutral-stability curves for symmetric convection between plane bound-
aries.

[13], who considered only symmetric motion. Since it is greater than the critical Rayleigh
number 31.29 for even f, the stability is governed by the latter.

For non-zero values of a, the differential system consisting of Egs. (36) to (39) will
be solved first by Chandrasekhar’s method [7]. The results are shown in Figs. 1 and 2
by dotted lines, for anti-symmetric and symmetric motions, respectively. After the
approximate solutions are available as guides, Eqgs. (45) and (46) are solved by trial and
error. The results are given in Table 1. The corresponding curves are drawn in Figs.

TABLE 1
d 0 0.5 1 2.5 3
R (even f) 31.3* 37 53.5 360 742
R (odd f) 237.6* 251.5 288 670

*Given before by Egs. (49) and (50).

1 and 2 for comparison with the approximate solutions. The power of Chandrasekhar’s
method is amply demonstrated.

ITI. StasiLiTy oF FLum 1IN A TUuBE

1. Formulation of the problem. In this part the stability of a viscous fluid in a
tube of radius b and heated below is considered. The effect of rotation, which for a
horizontal layer of fluid has been discussed by Chandrasekhar [10], will be investigated.

If (z, , 2, , ;) are cylindrical coordinates, the linearized forms of the equations of
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motion and the equation of heat diffusion are, under the assumptions stated at the
beginning of Part II

du | o du )__W ( _ﬁ_Z%)
”°(af t 2o, — 2W oz, T PN T T o) B0
A, ) __1op ( _ 2 ___6“1)
m<37-+ 25, + 2% oo el due =B+ 520, (52)
du 3 ap’
m&f+9ﬁ§= ~ + pwhts + pogal’ (53)

in which the primes on p and T indicate perturbatlon quantities, the equation of state
has been utilized, and p, has the same meaning as in Eq. (4). The linearized diffusion
equation is
671/ ,
= + 9 + Bus = kAT (54)

in which g is the primary temperature gradlent in the direction of the vertical. If now
one sets

(gb!,:tz y%) = (r,0,2)

22

(K (u, v, )
2_

T' = gbO, 1= g =25

the linearized equations become, with B for Qb°/«

%4 p( - m) = -S4 n{a - - 22), @)
—+B( +2) -%3—5+P’<A”’f§+r22%)' (56)
%—?-}-B%E= —%§+érAwarRe, (67
%+B%§+w=m, | (58)

in which A is now dimensionless and R is the Rayleigh number based on b. The equation
of continuity is

d(rw)
or

After the case of no rotation has been discussed the effect of rotation will then be
investigated only for the rotationally symmetric case. If (as it turns out to be the case)

a(r'w)

+ 3, + =0. (59)
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rotation has no effect on the stability of the most unstable mode, the most important
aspect of the problem is solved. For axisymmetric convection, Egs. (55) to (59) become

M _ op 9 ( _@
Y 2By = ar+PrAu 7)o

il v
Y + 2Bu = Pr(Av - ;2) ,

%?=-—%%+PrAw—PrRe,
80+ w = ae,
o)\ 3w _,
in which
s=p+ips %, p-2 g e

(60)

(61)

(62)

(63)

(64)

Equation (64) permits the use of Stokes’ stream function y in terms of which the velocity

components are

Eliminating ¢ between Egs. (60) and (62), one has

d 1 ou dw ov
[at—Pr(A - r’):l(az - Er—) = 2B, + Prk D6

which, by virtue of Eqgs. (65), can be written as

5 _ ~ D (a=1)¥ oo
[at Pr(A r,)](A ) 2B+ PrR Do

)/ r

since
du_w_(p1 1&)_(_g£
9z ar_(DrD+r6z2¢_ A ) r

Equations (61) and (63) can be written as

9 _ _W - _opd ¥
[at PT(A rz)]v— 2Bazr T

(3= oo~ 100

If one tries a solution of the type

R4
T

= ¥(r) cos az ¢,

v = V() sin az ¢,

0 = 6(r) cosaze’,

(65)

(66)

(67)

(68)
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Eqgs. (66) to (68) become

(¢ — Pr L)LY = 2aBV + Pr R D9, (69)
(¢ — Pr L)V = 2aBY¥, (70)
(e — L0 = 1 Dry, (71)
in which
L=D+ip-5-a=Dlp -0
(72)
L=D+1D-d=1DrD-a
The boundary conditions are
v =0, DV = finite, V =0, D=0 at r=0, (73)
v =0, DV =0, V=0, D=0 at r=1. (74)

The differential system consisting of Eqs. (69) to (74) governs the stability against
axisymmetric convection of the fluid column under rotation and heated from below.
If there is no rotation, B can simply be set equal to zero.

2. The principle of exchange of stabilities. By a procedure similar to that used in
Part II, it can be demonstrated that for axisymmetric motion a time-independent
solution exists if

Pra® .. Pra’
R >4, orif BR
which means that for any given wave number a time-independent solution exists for
sufficiently small Rayleigh number and sufficiently weak rotation. Furthermore it has
been demonstrated* that, for zero wave number and undamped motion,
2
o= —nB = -2 (75)

K

>4

in which 2r/n is the period of motion in the direction of ¢. Equation (75) states that
the convection pattern progresses with angular speed @. For axisymmetric motion,
n = 0, and ¢; = 0 if the disturbances are undamped. Thus for neutral stability axi-
symmetric motion is time-independent for zero wave number.

3. Solution for the case of no rotation. Since for the case of no rotation a time-
independent solution corresponding to neutral stability exists, the differential systems
to be solved are (with A = —R6)

L™ = Dh, (76)
L'h = p;-m, (77)

*The demonstration is omitted to save space.
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and
¥ =0, D¥ =0, Dh=0 at r=0,1. (78)
The differential equation and boundary conditions for V can be simply satisfied by
taking V to be zero. Differentiating Eq. (77), one has
LDh = R(L + a*)V.

Thus Eq. (76) can be written as
L% = R(L + a°)¥, (79)

with boundary conditions
¥=0, D¥=0 L¥=0 at r=0,]1.

Since the indicial equation is exactly the same as that preceding Eq. (43), the funda~
mental solutions of Eq. (79) are the Bessel functions

J (), J1(w,r), J1(Twsr),

in which the «’s have the same values as in Part II (with the Rayleigh number based
on b, of course). The secular equation obtained from the boundary conditions is

J 1(’iw1) J 1(‘i¢02) A (Ws)
wJ O(iwl) w2 o('i“’z) wsJ o(’iws) =0, (80)

miJ 1(twy) m:J 1(tws) maJ 1(to3)

since

adJ,(ler)
dr
The determinant equation in which the «’s contain R and a, is a single equation though
in the form given it is complex, and is the solution of the problem. With precisely the

same arguments as in Part II, one concludes that the critical Rayleigh number occurs

at zero wave number.
For zero wave number a, the secular equation can be shown by a direct calculation

to be

s ofior) — % JoGiwr).

JL(RHT (R4 + 1Jo(RVJ(RV*) = 0,
the first root of which is
RY* = 4611, or R = 452.1. (81)

This number was first given by Hales [11], who considered only the axisymmetric case
which, as will be seen, does not correspond to the true critical Rayleigh number.

Although only for the axisymmetric case has it been proved that the most unstable
condition is associated with a wave number of zero, this situation can be expected to
hold even for the other modes of motion. If one investigates the stability at zero wave
number for the other modes (not axisymmetric), the conclusion reached in Sec. 2 of
Part II enables one to write Eqgs. (62) and (63) as

LW = R9, (82)
Lo=W, (83)
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in which

2
w = W(r) cos nep, 6 = 6(r) cos ng, L,.ED’-I—%D—%

since one may assume the z-gradient of ¢ (the perturbation pressure term) to be zero.
This assumption can be justified physically from the symmetry of the flow, which is
upward as well as downward and is motivated as much by the buoyancy of the hotter
fluid as by the negative buoyancy of the colder fluid. The boundary conditions are

W =0, D=0 at r=1.
W and 6 non-singularat r = 0.
From Eqgs. (82) and (83) it follows that
' ‘ LW = RW,
the adequate solutions of which are
J(RY*) and 4"J,(GRY'r),
a combination of which is to satisfy the boundary conditions
W =0, DLW =0 at r=1.
The secular equation is
JLGRV)TURYY) + iJIGRV)T(RYY) = 0, (84)
in which
Ji@) = =2 1@ + Jaa(@),
the primes denoting differentiation with respect to the entire argument. The equation

preceeding Eq. (81) can be obtained from Eq. (84) by taking n to be zero. The first
roots of Eq. (84) for integral values of n are given in Table 2. Higher roots for each n

TABLE 2
n 0 1 2
R4 4.611 2.871 4.259
R 452.1 67.9 329.1

can be found, which undoubtedly correspond to neutral stability. In this case, as in the
case of plane boundaries, what happens as these higher roots are crossed has not yet
been rigorously investigated mathematically or understood physically. As far as the
first roots go, the second mode (n = 1) is the most unstable, and axisymmetric dis-
turbances are more stable not only than those of the second mode but also than those
of the third mode (n = 2). The second mode is antisymmetric, and compared with the
antisymmetric motion for the case of plane boundaries is more stable. This is not sur-
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prising, because the hydraulic radius for the latter case is, for b = d, exactly twice the
hydraulic radius for the circular tube. The number 67.9 was first given by Taylor [12]
without proof.

For non-zero wave numbers, the method of Chandrasekhar has been employed to
solve the system consisting of Eqgs. (76) to (78). The results are shown in Fig. 3 by the

3 _
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R

Fia. 3. Approximate and exact neutral-stability curves for axisymmetric convection in a circular tube.

dotted line. With the assistance of these results Eq. (80) is solved numerically. The
results are given in Table 3 and are represented by a curve in Fig. 3. These values are
in good agreement with those given by Hales [11] for a smaller range. Hales observed
from his numerical data for the symmetric case but without analytic proof that the most
unsteady mode corresponds to zero wave number.

TABLE 3

R 452.1 528 759 1322

4. Axisymmetric motion with imposed rotation. Although the time-independence
at neutral stability has been demonstrated only under certain restrictions when a general
rotation is present, indications for it are so strong that it can be assumed. Putting o
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equal to zero and eliminating ¥ and 6 among Eqgs. (69) to (71), one has, for axisymmetric
motion,

[L’ + R(L + @) + (&;73)2]% = 0.

By a process entirely the same as that used in Part II, one can show that for any definite
value of B/Pr the critical Rayleigh number occurs at zero wave number. Since the
effect of rotation is manifested in the number (aB/Pr)* which contains a?, for zero
wave number the general rotation has no influence whatever on the stability. The critical
Rayleigh number is therefore still given by Eq. (81). Physically, this is understandable
because at zero wave number there is no radial motion, which alone is inhibited by rota-
tion. In fact, by similar reasoning one may conjecture that a vertical magnetic field
has no influence whatever on the value of the critical Rayleigh number, since no mag-
netic lines are crossed at zero wave number.

For non-zero wave numbers Chandrasekhar’s method will be extended to be used
for three equations instead of two. If V' = (2aB/Pr)V, ¢ = R0, the equations to be
solved are

LN = -V’ — D¢ (85)
, — _(2aBY
Ly’ = —( Pr )\I,’ 86)
Lo = —RG Dr\If) , (87)
with boundary conditions

V' =0 at r=0,1; (88)
¥ =0, D¥ =0 at r=0,1; (89)
D¢’ =0 at r=0,1. (90)

If the N’s are the zeros of the Bessel function J,(A), the forms
0’ = Z AmJo(kmr); (91)

m=1

V= 2 AL, (92)

m=1

are appropriate from the standpoint of the boundary conditions on ¥’ and ¢'. If these
expressions are substituted in Eq. (85) and the result is solved exactly together with
the boundary conditions, one obtains,

=3 A,..[B,,,iJl(iar) + CorJo(ar) + ]’# J1(>\,,.r):|

(93)
+ 3 A,,’,I:B,’,.iJl(iar) + Curd(ar) — Ml—z J,()\,,.r)]

m=1
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in which
0 ’ J A,,. G
B B = (Ca, CO YD (Coy0n) = O, - L0RE,
2 _ 32 . - iazJﬁ(ia) _ . . .
M? = AL+ 4, G = ~J.Ga) (ia) 2J(ta) + iaJ,(ia).

Substituting Eq. (93) in (87) and expanding in a series of Jo(\,.r), one has

M, 5 —a’BuPp | Cu@m i ] [ —a’BLP, + C.Q. x_]}
R An= ;{Am[ N + Nom +4 Nom +M » (99)

with
1o\ /4 (1a)
M )

P, =
1
Q. = —2aP, + a f i (Gan) Jo(Ar) dr.
1)
Substituting Eq. (93) in (86) and expanding in a series of J,(A,r), one obtains
Pr “ABuPrn | CuSa
M(zaB> ﬂ; A [ Nlm + Nlm + M2]

o [ “AaB4Py + CiSn 1
+ Z A"[ Nlm M2:|

m=1

(95)

in which
1
8, = f 12 ior) J(\) di,
1]

Nim = — %Jo()‘m)Jz()\m)-

Taking m and n to be 1 in Eqgs. (94) and (95) and demanding that 4, and A/ not be
both zero, one arrives at the condition

x1P: = x.®, (96)
in which
Y ;;BPI .y
8, = O -];T:\IB,P, + ;;2,

Equation (96) represents the first approximation to the relationship between a, R, and
(B/Pr)* for neutral stability. Its graph for any fixed value of B/Pr intersects the neutral
curve for no rotation at the R-axis, and can be expected to lie to the right of the latter
curve for non-zero values of a.
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IV. CoNcrLusioNS

From the foregoing it can be concluded that

(1) With no rotation, convection at neutral stability is time-independent. With
rotation the time-independence of axisymmetric motion for neutral stability can be
proved only under certain conditions, but is valid if the wave number is zero. For other
modes of motion in a rotating circular tube the undamped motion is time-independent
relative to a frame of reference rotating with the tube, provided the wave number is zero.

(2) With no rotation the critical Rayleigh numbers occur at zero wave number for
plane boundaries and for axisymmetric motion, and can be expected to occur at zero
wave number for other modes of motion in a circular tube. Antisymmetric modes are
more unstable. For such modes the critical Rayleigh number is 31.3 for plane boundaries,
and 67.9 for a circular boundary. (The priority of these numbers belongs to Taylor.)

(3) Detailed relationships between the Rayleigh number and the wave number at
neutral stability are given by Eq. (46), one similar to it, and Eq. (80), and by the graphs
and tables. An approximate relationship connecting the Rayleigh number, rotation
parameter, and wave number is given by Eq. (96) for neutral stability in the presence
of rotation. Since the effect of rotation on the mean orientation of the fluid has been
neglected in this paper, the results concerning the effects of rotation are only approximate.
The results for zero rotation are rigorous.
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