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Abstract. An exact solution is obtained for the diffraction of a dipole field by a
unidirectionally conducting semi-infinite plane screen. Double Laplace transforms are
applied to Maxwell's equations, and the defining conditions of the unidirectionality
lead to an equation between two complex functions of two complex variables. This
equation is solved by an extension of the usual function-theoretical method, and we
can then express the electro-magnetic field in terms of certain complex triple integrals.
These are transformed into real integrals, so that it is possible to discuss the field behavior
in the neighborhood of the diffracting edge. The variation of singularity along the edge
of the screen is given.

1. Introduction. Diffraction by a unidirectionally conducting body is the subject of
two recent investigations: Toraldo di Francia [1] has given approximate results, based
on a physical discussion, for a unidirectional screen of small diameter, while Karp [2]
has obtained an exact solution for the diffraction of a plane wave by a unidirectional
semi-infinite screen. Provided only the far field were of interest, well-known reciprocity
considerations would suffice to extend the plane wave result to the case of dipole inci-
dence; but a discussion of the near field, and in particular of the physically interesting
variation of the fields and currents along the edge of the unidirectional screen, requires
the complete solution of the diffraction problem for a dipole, and this is the problem
here considered.

Important applications of the theory of unidirectional screens are: (1) to the measure-
ment of the angular momentum of electromagnetic radiation, as in Toraldo di Francia's
work (see [1, 9, 10]); (2) to microwave problems involving unidirectionally conducting
components; (3) to problems of propagation over anisotropic media. In any of these
cases, the problem of this paper plays the role of a canonical problem, in the sense that
our results as to edge behavior for a semi-infinite screen permit (by way of Keller's
geometrical theory of diffraction: see [11], and references given there to earlier work
by Keller and his collaborators) the deduction of asymptotic results for a large class of
unidirectional screens of finite size.

Our analysis is based on a formulation of the diffraction of a dipole field by a uni-
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directional semi-infinite screen as a Wiener-Hopf problem. Jones [3] observed that
diffraction problems leading to Wiener-Hopf equations are advantageously treated by
taking the transform of the differential equation before applying boundary conditions:
extending Jones' method to the case of dipole incidence amounts to little more than
replacing single by double transforms. The known solution [4] for a perfectly conducting
screen may very easily be derived in this manner.

For the case of dipole incidence on a unidirectional semi-infinite screen, it is found
after taking two successive Laplace transforms of the Maxwell equation

+ k2)e = 0,

that we may express the double transform of the electric field as an unknown vector
function of the transform variables. Obtaining relations among the components of
this vector function from the remaining Maxwell equations, and then applying the
boundary condition and jump conditions derived from the unidirectionality, we show
in Sec. 2 that the diffraction problem is equivalent to the solution of a single transform
equation for two unknown complex functions. The transform equation also involves two
independent complex variables and its solution therefore requires some modification of
the usual function-theoretical considerations. This solution is derived in Sec. 3, with
the result that the field components are expressed as Laplace inverses.

In Sec. 4, it is found that the originals of these inverse transforms are integrals of a
type introduced by Macdonald [5], plus additional terms which it is possible to transform
into certain real integrals. These results permit us to give the variation of the near
field as the diffracting edge is traversed.

The results are summarized in Sec. 5, in the form of a theorem, and it is verified
that all conditions of the problem are met.

2. Derivation of the transform equation. We consider diffraction by a unidirection-
ally conducting semi-infinite screen: x > Q, — < y < °°, 2 = 0, where x, y, z form a
right-hand rectangular coordinate system. Let e0 , h0 be the electric and magnetic field
vectors of an incident dipole field, which we take as an electric dipole with axis perpen-
dicular to the screen, while remarking that the method which follows is also applicable
to an arbitrarily oriented dipole. Locating our dipole at (x0, y0, Zo) with z0 > 0, we may
describe the incident field by the Hertz vector (0, 0, IL), where II, = e~'kB/kR and

R=[(x- x0)2 + (y- y0)2 + (z - z0)2]V2.

The corresponding electromagnetic field components are

9 = (lIL fc2lI)
0 \d2 dx ' dz dy ' dz ')dz dy ' dz

n, an,
dy ' dx

(1)
diL an,

h0 = ico«( +-^77 , — ^7 , 0^.

Time dependence e'"' is understood.
Now denote by e0 + e, h0 + h the total electric and magnetic fields resulting from

the incidence of e0 , h0 upon the given screen. Then the scattered field vectors e, h
satisfy the time-harmonic Maxwell equations

(Axvt + k2)e = 0, (2)

V-e = 0, (3)
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—iufjh = V X e, (4)

subject to a set of conditions (boundary condition, two jump conditions and an edge
condition) of which the first three are intended as a phenomenological description of
the unidirectional conductivity of the diffracting screen. These conditions are con-
veniently stated in terms of field components in the direction £ of conductivity and
the direction r? normal to £:

= ~ eoe , (5)

[/i{] = hk{z + 0) — h({z — 0) = 0, across the screen, (6)

[e„] = 0, across the screen, (7)

[/i„] = 0, at the edge of the screen. (8)

We also assume that e, h are integrable at the edge of the screen: this, with (8), yields
a unique solution.

Conditions at infinity complete our specification of the scattered field. We impose
the familiar condition that e, h be exponentially damped solutions of the three-dimensional
wave equation. The implied behavior at infinity is that of the elementary solution
e~,hB/kR, where we suppose k to have a negative imaginary part: k = kx — ik2 (k2 > 0).

Now define the double Laplace transforms E, H of the scattered field vectors e, h:

5K.
It follows from (2) that E satisfies

(J? + K')E " °' <8)
where K2 = k2 + s2 + t2. Our condition on e at infinity yields the range of validity
of (9): we fix K by the choice

(k2 + s2 + *2)1/2|,=.=o = +k,

and note that (9) is meaningful for | Re t | < fc2 , | Re s | < | Im (fc2 + i2)1 |. In this
domain of s, t we write the solution of (9) (notice Im K < 0) as

E = A(s, t) exp {—iK(z + z0)], z > 0 ^

= B(s, t) exp [iK{z — z0)], z < 0.

We proceed to determine the transform of the scattered electric field by solving for
A(s, t), B(s, t).

It is convenient to rotate coordinates from x, y to {, i?. Let a0 (0 < «„ < x/2) be the
angle, measured clockwise, from the ^-direction to the ^-direction. Then

£ = x cos a0 — y sin a0 ,

?/ = x sin a0 + y cos a0 .

The corresponding rotated transform variables p, q, with the property + qri = sx — ty,
are given by



116 JAMES RADLOW [Vol. XVII, No. 2

p = s cos a0 + t sin aa ,

q = s sin a0 — t cos a0 .

We notice that s2 + t2 = p2 + g2 is invariant under the rotation, so that K2 = k2 + s2+
t2 — k2 + p2 + q. It is clear that (10) is unchanged if A, B are understood to be functions
of p, q rather than s, t.

We now deduce the basic transform equation of our problem. Observe first that
(10) permits us to write the transform of (4) as

—iutiR = (pii + qi2 =F iKQ - E, (13)
where ix , i2 , i3 , are unit vectors in the £, t) and z directions. Similarly, we write the
transform of (3) as

(p^ + qi2 =F iKi3)-E = 0, (14)

which according to (10) is equivalent to

PA( + qAv - iKAz = 0, ^

pB( + qBn + iKBz = 0.

Since conditions (5), (7) yield A( = B( , Av = 5, , we see that Bt = — A, , while

A, = ^ (pAi + qA.,). (16)

The transform of (6), with [7/{] computed from (13), then gives

qA. = -iKA, , (17)
from which

a — PQA-t ,.
A* ~ k2 + p2 (18)

Now calculate [i/„] from (13). If we use (17), (18) to eliminate At , and if we denote
(iun/2) [//,] = A, the result is our basic transform equation:

(,k2 + p2)A = k2iKA( exp (-iKz0). (19)

Now simplify (19) by introducing the boundary condition (5). Let

E +—j dx J dye 'x+tve(x, y, z),

E_ = J dx J dy e~'x+'"e(x, y, z),

E,(s, t,z)|,_0 = £=.(0)

and define the ^-component of E, (0) in accordance with (11) as

jE-{(0) = E±x(0) cos a0 — £".,,(0) sin a0 .

Then

E+e(0) + E-((0) = A( exp (—iKzn), (20)
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where we see from (5) that

£+{(0) = - f dx f dye-x+,ueoi
J 0 J — co

and from (1) that

(d2n, d2n, . ^
e°£ = \aTax cosa° ~ dz&ysin010) (21)

Since II, differs only by a factor of k/4x from the free-space Green's function of the
three-dimensional wave equation, we readily deduce the ^-transform (valid for
| Re t | < k2)

exp \-ik\(x - Xp)2 + (y ~ VoY + 4}1/2 + ty]
i- fc{(x - x„)2 + (y - y0)2 + z20\1/2 dy (22)

where

and

= e"'Ho2)[K0{(x - x0)2 + zl}1/2]

K0 = (k2 + eyn,

(,k2 + 0,/2|,-o = +fc.

The z-transform

/;
cfa e

of the right side of (22) is then obtained from the known integral representation

H^[K0{{x - xQ)2 + zl}l/2] = P"" exp ~ *j ~ ^7l+ w2)'/2"o] (23)
m Jwo—i°° lAo ~~r w )

where | w0 \ < | Im K„ |. Recalling that z0 > 0, we conclude that the double transform of
(21), valid for Re s > w0 , is

E+({0) = Wf. P+<" exp [-««. - m + wT2Zo\ dw (24)
K1 J It) (J — J CD S IV

Applying (20) and (24), we put (19) in the form

(k2 + p2) A = —kpKe'"° [ ° ' ~ \~wx» ~^(A'o + w2V/2z0] ̂  + k*iKE ^^ (25)
J ID o — (CO S XV

where | w0 | < | Im Ka [. Either of the two unknown functions A, i?_£(0) completely
determines E.

3. Transforms of the field components. The usual Wiener-Hopf techniques are
not immediately applicable to (25), since the domains of regularity of the functions
depend on the two complex variables s and t simultaneously. In this section, we show
how the difficulty may be overcome by restricting all operations to a suitable range of
t. For such t, (25) is treated as if s alone were the variable. Certain representation theorems
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for the Laplace transform are applied to carry out the function-theoretical argument,
and the resulting knowledge of A yields the transforms of the various field components.

Now all field components are required to be exponentially damped solutions of the
three-dimensional wave equation. It follows that A = (iu/xf2) [//„] is regular for Re
(s + iK0) > 0, while A'„£(0) is regular for Re (iK0 — s) > 0. The respective half-planes
of regularity depend on K0 = (/c2 + f)l/2, but a discussion based on (22) shows that
the same ^-condition suffices for the regularity of both A and i?_{(0), namely that t
be in the strip | Re t \ < k2 .

The factorization K = (s + iK0)1/2 (s — iK0)1/2 then permits us to rewrite (25) as

kpe'y°(p — ik)~\s — iK0)W2 J exp [ — wx0 — i(K20 + w2)W2z0](s — w)'1 dw ^

= -(p + ik)(s + iK0)~1/2A + ik2(p - iky\s - iKoY/2E^(0),

where | w0 | < | Im K0 |, and where the condition | Re t | < k2 is met by choosing Re
t = 0. Then | Im K0 \ > k2 , and we may take | w0 | < k2 . Denote the left side of (26)
by /(s) and the first and second terms on the right by g(s), h(s) respectively. The equation

/(s) = g(s) + h(s), (26')

where /(s) is regular in the strip w0 < Re s < k2, and g(s), h(s) are regular in the over-
lapping half-plane Re s > — k2 , Re s < k2 , may be solved for the unknown functions
g(s), h(s) by an application of the Wiener-Hopf technique. The procedure appears to
be equivalent to that given formally by Harrington [6], but the justification may perhaps
be of interest.

We reason as follows. The fact that /(s) is regular in a strip suggests that it is there
represented by a two-sided Laplace transform. We shall assume such a representation:
the assumption will be justified on the basis of results we obtain for g(s) and h(s). Pro-
visionally, then, we write

where
rr»+.'

/(s) = J e~"F(x) dx, (27)

m = dt; (| r„ I < k2).

Next observe that h(s) has the form

h(s) = ik2 sec a0s'1/2E-((CI) + s~3/2hl(s),

where hx (s) is bounded for Re s < k2 . The function

s'^Xis) = h(s) - ik2 sec a0s'W2E_((0) (28)

then meets all conditions of a standard representation theorem [7] for the one-sided
Laplace transform. Since ik2 sec a0 s~1/2 i?_f(0) is a Laplace transform [namely the
transform of the convolution of the inverses of s~1/2 and of ik2 sec a0 i?-£(0)], it follows
that h(s) is.

As to g(s), we notice that A and s_1/2 A are transforms. To consider s A, write

sA = ^lim r^e—dx. (29)2 J, dx
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An integration by parts, with an application of our edge condition (8) as « —> 0,
permits us to conclude that sA is a Laplace transform; an argument similar to that
given for h(s) then shows that g(s) meets the conditions of the representation theorem
[7] used above.

Our result (from which the assumed representation (27) follows directly) is that
g(s), h(s) are Laplace transforms of certain functions G(x), II(x) over the ranges (0, <»)>
(— oo, 0) respectively. Adding these representations to the now proved (27), we replace
(26') by

f e"xF(x) dx = f e~'xG(x) dx + f e~"H(x) dx. (30)
J —oo J 0 J — co

The standard uniqueness theorem [8] for two-sided transforms readily yields

e~"F(x) dx = g(s), (31a)I
e~"F(x) dx = h(s). (31b)

Our transform equation (26') is therefore solved for the two unknown functions g(s),
h(s). We remark that the familiar function-theoretic ingredients (factorization via
Cauchy's integral formula, the appeal to analytic continuation and to Liouville's theorem)
of the Wiener-Hopf techniques are implicit in the representation and uniqueness theorems
we have used. At the same time, it appears that the implications and domain of appli-
cability of the technique may be considerably enlarged by drawing on more general
representation theorems, which are independent of the classical function-theoretic
approach of Wiener and Hopf. We develop this point of view, and give applications to
diffraction theory, in a forthcoming investigation.

Expressions for the transforms of the various field components follow at once from
either (31a) or (31b). Let us apply (31a): the substitution.of our definitions [see (26),
(26')] of g(s), /(s) and

F(x) = ~ /(f)er* df (I fo | < k2)

in (31a) leads to
A = ke'"(a + iK0)U2(p + iky1-J, (32)

where

r f (w cos Ct0 + t sin a0)(w — iK0) r . ,T,2 , M/!l j /ooxJ = / t w exp [-wxo — iz0(K0 + w) ] dw (33)
Jwo-iCO \W — S)(w cos a0 + t sin a0 — ik)

and | w0 | < | Im K0 |. We then apply (19), (18), (17) in succession to find

(34)

e,i''-'b~> ~ ik(V l\m (35)

A. exp C-flteJ - + iK'y"-J. (36)
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The x — and y — components of A(x, t) follow from (34), (35):

i < ;Tr~ \ exp (ty0){(k2 + p2) cos a0 + pq sin a0} .
Ax exp (-iKz0) - .k{v + ,Kq)1/2 -J, (37)

1 r i_i ( ;jr \ _exP (^o)\(k2 + v2) sin a0 - pq cosa0} , .
A" exP {~lKza) ~ ik(p + ik)(s - iKoT (38)

In accordance with (10), the scattered electric field is given by

e = 77T^\2 f [ {A(s, t) exp (— iKztt) J exp [sx — i \ z \ K — ty] dt ds, (39)
\Zirl) J s J t

where S denotes a vertical contour from s0 — i °° to s0 + i °°, with | s0 | < k2 , while
T denotes a vertical contour from — iroto + i°°.We now substitute (34), (35), (36)
in (39) to obtain explicit expressions for the field components e{ , ev , e, . Writing W for
the vertical contour from w0 — i 00 to w0 + i 00, where | w0 | < | Im K„ |, and denoting
(w cos a0 + t sin a0) by — pQ , we introduce the complex integrals

(2n)2k fs fT Iw
PPq

i/i  dw dt ds

(2iri) k Js JT Jw (P + ik)(p0 + ik) ^

exp [sx — wx0 — iK \ z | — i{K\ + w2)l/2z0 — t{y — y0)]
(s w) {is iKo)(w + iK0)}

and

r_ ~k f f f exp [sa; - wx0 - iK \ z \ - i(K20 + w2)W2z0 - t(y - y0)] . .
(2rif Js JT Jw (s - w)(p + ik)(p0 + ik)\(s - iK0)(w + iK0) }1/2 UW dt dS l41j

in terms of which we express the electric field components as

> (42)

^,2 3 (43)

— fc2 ' (44)

where the subscripts of I, G denote partial derivatives, with the £ and £0 derivatives
defined by

d d d . . .
— = — cos a0 — T" sin q;0 , (45)d^dxdy

d d d . . .
Tr" = ~z " cos <xo "t sin a0 • (46)
d£o dXo dy o

The operational equivalents of d/di-, d/d!jn are accordingly p, p0 respectively.
Applying (4), the components of the scattered magnetic field are

h( = 0, (47)

K = - r- ' (48)Ico/J.

K = t~~ . (49)
IC0/J.
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The x- and ^-components of the field are linear combinations of the £- and ^-components:

ex = e£ cos a0 + e, sin a0

ey = —sin a0 + e, cos a0

and

hx = he cos a0 + h, sin a0

h„ = —h( sin a0 + cos a0 •

4. Discussion of the field; edge behavior. In this section, we relate the integrals
I, G of (40), (41) to an integral

-1 f f [ exp\sx-wx0-iK\z\-i(Kl+wy/2z0-t(y-y0)]
F~(2mTk Js Jr J, (s-w){(s-iK0)(W+iK0)r * * (50)

which may be calculated explicitly. It is in fact readily shown that $ = e~xkR/kR + F
is exactly the classical solution of Macdonald [5] for the field of a point source in the
presence of a semi-infinite screen on which the field vanishes. Macdonald's result

where

with

and

$ = IR - Is , (51)

Ir = i f II'"(kit cosh M) dn, (52)
£ J-HR

Is = 5 f Hi2\kS cosh M) dp, (53)
" J -us

R = [(x - x0)2 + (2/ - 2/0)2 + (2 - 2o)2]'/2,

£ = [(« - x0)2 + (?/ - 2/0)2 + (2 + z0)2]I/2,

Ms = sinh-1 {(2/R)(rr0)1/2 cos [(<£ - 4>0)/2]},

Ms = sinh"1 {(2/S)(rr0)1/2 cos [(0 + <fo)/2]},

x — r cos <t>, x0 = r0 cos <t>0 , z — r sin <j>, z0 = r0 sin $0 ,

will therefore facilitate our discussion of the present solution.
Now consider the definitions (40), (41), (50) of I, G, F. We find

dl 3£0
and

d*G = k2I (54)

\dH /\d£o
so that

(I+*Xs;+ a)®' (55)

7-f + e + s(l + ^)G- (56)
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Applying (54) to e as given by (42), (43), (44) we have

e = (I(z. + G(ozo > , !,,.)• (57)

The result F = — (e~'kR/kft) + where $ is Macdonald's fundamental solution as
given by (51), (52), (53), is then combined with (56) to give

e + e„ = + *(1), + *(2\ $,20 + + *(3)}, (58)

where

1$rC1) = Gz.i + ^ ((?8o££o + Glo(e), (59i)

= <?,2o + -TT ((?„,(, + £?,«„{), (59ii)

M^3' = (?„„ + + (?„„{). (59iii)

An explicit integral representation for xIr<1> now follows from (41), (59i). We see
first that

( d \ a) . dM

where

M = 7—^-5 f f [ exp [«c — wx0 — iK\z
{Am) Js Jt J w

'fT7-2 t 2\ 1/2 ./ \1 dW dt dS
i(Ko + w) z0 - t(y — 2/0)] {(s - iK0)(w + iK0)}1/2

But we may integrate over W, T, S successively to evaluate M. Consider

M1 = — f (w + iK0)~1/2 exp [—wx0 — iz0(K\ + w2)I/2] dw.
Zirt J \y

Let x0 = r0 cos <p0 , z0 = r0 sin <j>0 and apply Cauchy's theorem to deform the path into
w = iK0 cos (0,, + iv), with — 00 < v < <*>• the result is

M--2SL
e~ir/\2K0)1/2

exp ( — iK0r0 cosh rf)K0 sin (<ft + irj) dt,
(2iK0)1/2 cos [(0„ + iv)/2]

/ exp ( — iK0r0 cosh rj) sin [(<f> + zi?)/2] dr,
J —002 tvi

= — isin (0o/2)ro1/2 exp ( — iK0r0).

Similarly, we deform S into s = — ik cos (6 + it]) to obtain

M, = . f (s — iK0) 1/2 exp [s.x — iK \ z |] ds = i sin (<t>/2)r 1/2 exp ( — iK0r),
2ttI J s
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where x — r cos <f>, z — r sin </>. We then have

M = f (M1)(M2) exp [-t(y - y0)] dt
J T

= (rr0)~1/2sin (0/2) sin (<t>0/2) exp [-t(y - y0) - iK0(r + r0)J dt,

and, applying (23),

M = — irk(r + r0)(rr0)~1/2 sin (0/2) sin (<i>0/2)f]H'f'{kp),

with p = [{y — y0)2 + (r + n,)2]1/2. Solving the differential equation

^)^r<1) = cos a°
3M

we find

,i><1) = r~l/2 sin (</>/2)^7rifc cos a0 sin (<£0/2) exp ( — ikQ

d_
dz0 11 (JW^ H"2)fp,) exP <&}, (60i)

where

x = r cos <f>, z = r sin $

r'a = [(x^)2 + 4]1/2, Xo = £o COS a0 + t;0 sin a0

p' = [(2/ - y'o)2 + (r + »o)2]1/2, y'o = sin a0 + Vo cos a0 •

It is to be noticed that vanishes on the screen, as does 3>£!<, , so that our boundary
condition (5) is satisfied.

Operational considerations now permit us to evaluate x5/<2), ̂<3). Let denote the
image of G under our two-dimensional transform; the operational equivalences

*a> = (-1 /k)(Kl + w2)u\p + Po + ik)G> ,

*(2) = (-1 /k)(Kl + wY2q{p + Po + ik)G* ,
*<3) = {i/k){{Kl + w2){K\ + «2)}1/2(p + p0 + ik)Gm ,

follow from (59i), (59ii), (59iii). Then let denote the image of ^1); the equivalences

o.(2) ^  Q  ^(1)
p + ik *

(3, A -i(Kl + s2)1/2 ,T.(1)
V' = —1 " y—\i/

p -f ik *
lead to evaluations

r Z jmv (1)
^<2) = e~'H / exp (ik£')

J _oo

vj>(3> _ e J exp (ik£r)

o*-
O T)

1 d*(I)
dz

d? (60ii)

, (60iii)£-£'
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where ^(1) is given by (60i). It is clear from (60ii) that SE''2' is an even function of z and
therefore continuous across the screen: since 'I>,20 vanishes on the screen, it follows
that the jump condition (7) is satisfied.

The behavior of in the neighborhood of the edge of the screen follows from
(60i). As r —* 0, the behavior is

^r(1) ~ r~U2 sin (0/2)v(y), (61i)

where

/
p

The leading terms in the expansions of ^r<2), ̂ <3) are:

d rf°
v(y) = ivik cos a0 exp (-ikQ ^ J (K)1/2 sin 2) exp (ikQ .

^<2) ~ r~I/2 sin (<fi/2)v(y) tan a0 (61ii)

~ —r~1/2 cos (<t>/2)v(y) sec a,, • (61 iii)

For the net edge behavior of the electric field components, we see from (58) that we
must add terms arising from the differentiation of $ to the ,]>(2), ̂ (3) terms. The
terms to be added are obtained from the expansion

$ ~ 2ir(rr0)1/2 sin (0/2)(sin 0o/2)(po)"I£/ri2)(A;po)

(po = p |r-«), which follows from our expression for F [see (50)] upon our noticing that

(d_ d \ = _M = it(t + r0) sin (0/2) sin (0o/2) H\2\kp)
\dx dx0) k (rr0)1/2 p

The explicit results for the leading terms are

e'~'-"sia<-*/2iiw), m

where v(y) is given above under (61i).
To complete our description of the field near the edge of the screen, we consider

(47), (48), (49). The results for the magnetic field components as r —» 0 are found
to be

h( = 0, (65)

hv ~ (r)1/2 cos (0/2) -2t'(«//i)I/2 sec2 a0 , (66)
"Co

h, ~ (r)1/2 sin (0/2) -2(«/m)1/2 tan a0 sec a0 ^r- (67)

It is evident from (66) that our edge condition (8) is satisfied. We remark also that
the edge behavior given by (62), (63), (64) verifies that obtained by Toraldo di Francia

■ r 1/2 sm
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[1] in an approximate treatment of diffraction by a unidirectionally conducting small
circular disc. The field behavior in the vicinity of a diffracting edge is, as anticipated,
independent of the shape of the screen.

5. Summary. The results of the foregoing analysis may be summarized in the form
of a theorem:

Theorem. Let a dipole field e0 , h0 derived from the Hertz vector

(0, 0, n,), with n, = (e~ikB/kR),

be incident upon a screen

X > 0, — co < y < co , 2 = 0

which has infinite conductivity in the ^-direction, where

£ = x cos a0 — y sin a0 (0 < a0 < v/2),

and is perfectly insulating in the direction rj normal to £:

7] = x sin a0 + y cos aa .

If the resulting scattered field e, h is required to satisfy Maxwell's equations, to be
outgoing at infinity, and to meet the conditions (boundary condition, two jump con-
ditions and an edge condition) of unidirectionality:

BC: e{ = 0, on the screen

JC1: [/i£] = 0, across the screen

JC2: [e„] = 0, across the screen

EC: [h,\ = 0, at the edge of the screen,

and also to be integrable at the edge of the screen, then the total (vector) field

S = e + e0 , 3C = h + h0

is given uniquely by

s = {$£20 + *<», + *<2), + k2n. + *(3)},

sc = , - fr + 6C"I dt] d?

where the components of the vectors S, 3C are in the £-, j/- and z-directions, and where
$ is Macdonald's classical solution, vanishing on the screen, and given by

$ = Ir Is ,

with

Ir = ^ T Hi2\kR cosh /i) dn,
& J-HE

Is = 1 f H?\kS cosh M) dn,
" J -us
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and

R = [(* - x„)2 + (y - yo)2 + (^ - za)2],/2,

S = [(* - x„)2 + fo - 2/„)2 + (a + 2„)2],/2,

Hr = sinlT1 \(2/R)(rr0)l/'2 cos [(<f> - <£0)/2]},

Ms = sinlT1 {(2/<S)(rr0)1/2 cos [(0 + 0O)/2]},

x = r cos 4>, z = r sin <£, x0 — r0 cos #0 , Zo = »"o sin $0 •

The functions \I>a>, xJ/<2,) \Ir!3) are defined by

ijr(1) = r~U2 sin (</»/2)|«'fc cos a0 sin {<t>0/2) exp (—ifcf0)

/£ r)\I/ ̂ 1 * Iexp (ifcr)
-« oy U-f

^<3) = e~'i£ f exp (ifc£')
*/ —oo

a^'1'
dz

t-r

rfr,{-£'
where p = [(?/ — y0)2 + (r + r0)2]1/2, and the functions bU), b(z) are given by

rf
b(,) = f (F... + *(3))

J —oo

b<" = - f' (f„. + *(2>)
J-co

d?«-£'

e-r
with F = — !!, + $>.

Some of the field components are singular as the edge of the screen is approached,
but these singularities are of the physically admissible 0 (r~1/2) type, as may be seen
from Eqs. (62) through (67) above. It is especially to be noticed, among our results
on edge behavior, that the t/-component of the electric field vanishes along the edge
of the screen; this follows either from (62), (63) or from (38). We conclude that a suitable
edge condition for our problem is

e„ = 0,

at the edge of the screen, exactly as for a perfectly conducting screen of the same
geometry. The use of the corresponding condition, namely that the field component
tangential to the rim of the screen be required to vanish, is therefore suggested for
further investigations of unidirectional screens. This condition is met by the approximate
solution of Toraldo di Francia [1].

We remark that we have given the highest order terms in r, in discussing edge
behavior: it is assumed that r0 is finite. If however we let r0 —> °°, the character of
the results for field behavior near the edge simplifies further. This type of approximation
was given by Senior [4] in discussing edge behavior for the incidence of a dipole field
on a perfectly conducting screen.
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We conclude by verifying our theorem. Let us write Maxwell's equations in the form

(At„ + /c2)3C = 0,

V-3C = 0,

iweS = V XX.

Notice now that ^(I) is a wave function, and that ^r<2>, ̂<3) are therefore wave functions.
It is then clear that b("\ b(z> are wave functions. Remarking [see (55), (59)] that

d^(1) a^(2) <m>(3) _ 2
d£ + dv dz

we find that (6, 3C) is an electromagnetic field. The boundary condition

6{ = —®0{

is satisfied; and the first jump condition is obviously met, since h( = 0. We have pointed
out in giving ^<2) that it is an even function of z; and it is clear that eij is continuous
across the screen, since $,2o is. The edge condition [/i„] = 0 at the edge of the screen
follows from the edge behavior of hr].

The author wishes to express his indebtedness and gratitude, for suggesting the
problem here treated as well as for many valuable discussions, to Professor S. N. Karp.
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