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ASYMPTOTIC DEVELOPMENTS FOR A BOUNDARY VALUE PROBLEM
CONTAINING A PARAMETER*

BY

RICHARD C. MacCAMY
Carnegie Institute of Technology

1. Introduction. It is the purpose of this paper to point out a curious type of singu-
larity which can arise in the perturbation of the solutions of boundary value problems
containing a parameter. We shall consider two such problems each for functions of x
and y continuous in y < 0, (x, y) bounded, and harmonic in y < 0. The two functions
satisfy the following sets of boundary condition, K being a positive constant and g(x)
a given function:

Problem I (A,) u„(x, 0) = 0 for | x \ > 1

(BJ u„(x, 0) + Ku(x, 0) = g{x) for | x \ < 1,

Problem II (A„) uv(x, 0) — Ku{x, 0) = 0 for | x \ > 1

(B„) uy{x, 0) = g(x) for | x \ < 1.

We admit the possibility of the function g(x) depending on K provided it be analytic
in K for K sufficiently small. The two problems clearly have much the same character,
the one deriving from the other essentially by interchanging the roles of the intervals
| x | < 1 and | x | > 1. In fact it can be shown that they are equivalent, that is solution
of the one yields the solution of the other [1]. The two problems indicate strikingly
the need for caution in the study of perturbations for despite their apparent similarity
we shall find entirely different behavior of the solutions for small K.

Physically (I) is a problem in heat conduction while (II) governs the diffraction of
surface water waves by a rigid dock of finite width [2], Differences in the problem become
more apparent when we specify the behavior of the solutions of (I) and (II) for large
x2 + y2. It is easily seen in fact that the following behaviors hold for (I) and (II) re-
spectively, [2].

(Cj) u{x, y) — c log (x2 + y) = 0(x2 + ?/)"' as x2 + y2 —> °°, c constant.

(Cn) u(x,y) — TeKvexKx = oQj as x —» + <» , y bounded

*'Kx = oQ) as x —» — j y bounded,u{x, y) — ReKye

for some constants T and R.
If one sets K = 0 in (I) and (II) the problems become formally the same namely

(A0) u„(x, 0) = 0 for | x | > 1

*Received May 9, 1958. This work was supported by the Office of Naval Research, Contract Non r-
222(25).
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(B0) u„(x, 0) = g(x) for | x \ < 1.
This last problem is trivial having as solution the function*,

u0{x, y) = —- [ g(t) log [(x - tf + y2] dt. (1.1)
7r J —i

One may ask now whether the solutions of problems (I) and (II) tend to u0(x, y) as
K —> 0. A glance at conditions (Ci) and Cu) leads one to suspect that such is the case
for the solution of (I) while for the solution of (II) difficulties might arise, a suspicion
which proves correct. We shall see that the solution of (I) is in fact an analytic function,
u{x, y; K) for complex K of sufficiently small absolute value, with u(x, y; 0) = u0(x, y).
The solution of (II) is also analytic in K but for a region 0 < | K \ < p. It has in fact
the rather curious asymptotic expansion,!

Ku(x, y,K)~ a Amn(x, y)Km(K log K)n Aw = 0. (1.2)
m = 0 n = 0

Thus the solution of (II) does not possess a limit as K —> 0. The apparent physical
paradox introduced in the finite dock problem can be removed by more careful attention
to physical units but the odd development (1.2) for the solution of (II) remains.

2. Developments for Problem (I). The development of the solution of Problem (I)
for small K is elementary. To solve (I) we try the function,

u(x, y; K) = -- f' /«; K) log [(* - t)2 + y2] dt. (2.1)
7T J —i

This function clearly is harmonic in y < 0 and satisfies (/lr) and (Ci). By a well known
formula, it will satisfy (Bs) provided f(t; K) is a solution of the integral equation,

f(x; K) + — [ j(t) K) log | x - t | dt = g(x) \ x | < 1. (2.2)
7T J — i

The usual method of successive approximations establishes that (2.2) possesses a solution
f(x; K) for suitably small K which is analytic in K. Further we have f(x, 0) = g(x).
Substitution in (2.1) yields a solution u(x, y; K) of (I) analytic for K sufficiently small
and with u(x, y; 0) = u0(x, y).

3. Developments for Problem (II). An integral representation for Problem (II) can
be obtained in the usual manner by introducing the Green's function G(x, y, t; K) defined
by,

G(x, y, t; K) = -1/2 log [(x — t)2 + y2] + J e~K" log [(x - t)2 + ??2] drj ^ ^

+ irieKve,Klx-'1.

We have,

Gy = KG = —

Thus setting,

(x - t)2 + y*

*For this we need Holder continuity of g(x).
fit is to be noted that asymptotic developments of the form (1.2) have been observed before in

Problem (II) but in an entirely different connection [3]. The meaning of the asymptotic development is
made clear in Sec. 3.
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uix, y, K) = -- f+1 fit; K)G(x, y, t; K) dt (3.2)
IT J —i

we find, in the same manner as (2.2) was obtained from (2.1),

K r+1
uv(x, 0; K) = fix; K) H / fit] K)Gix, 0, t; K) dt on | x \ < 1

T

while uix, y; K) satisfies (4n) for any choice of /. It is further easy to show that the
function defined by (3.2) is harmonic in y < 0, continuous in y < 0 and satisfies (Cn).
Thus (3.2) yields a solution of Problem (II) if fix; K) is a solution of the integral equation,

gix) = fix; jK) + — f fit; K)Gix, 0, t;K) dt on | x | < 1. (3.3)
7r J —i

Note that the function fix) is related to the solution u by,

fix; K) = uuix, 0; K) — Kuix, 0; K). (3.4)

In order to express uix, y; K) as a function of the parameter K we must so express
Gix, y, t; K) Observe first that,

«exV'K"-" = E Amix - t, y)Km,
m = 0

KeK" f° log [(x - tf + ^2] dv (3 5)

= KeK" f, (~5/r f° v" log [(x - t)2 + v2l dv = Z Bmix, y, t)Km,
m= 1 • Jy m = 1

the series converging absolutely and uniformly for bounded x, y, t, and | K \ The term,

I = KeKv [ e~K" log [ix - tf + r,2] dv (3.6)
Jo

is more complicated. Note first that,

I = eKv J e~T log ix - tf + dr

= -2eKv log K + eKu f e" log \{K \ x - t |)2 + r2] dr,
J 0

hence,

lim (/ + 2 log K) = 2 f e~l log t dt = —2y, (3.7)
JC—0 Jo

where y is Euler's constant.
To obtain a more detailed description of I we study it as a function of complex K.

The integral (3.6) defining I converges, and yields an analytic function as long as
0 < | K |, 0 < arg K < x/2.1 may be continued analytically to a larger sector by shifting
the path of integration. In order to continue IiK) into arg K > x/2 we shift the path
into the sector arg 17 < 0 so that it keeps the points ± i | x — t \ always to the right
and runs to °° along the ray arg 77 = — arg K, thus keeping Krj positive for large | 77 |.
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In particular if I+ denotes the value of I after one counter-clockwise circuit of the origin
we have,

/+ = KeKy J e-K" log [(x - t)2 + v2] dv + KeK' J" e"K< (log [(x - tf + r,2)]~ dv,

where c denotes a closed path surrounding ± i | x — t | in the negative sense and (log
[(x — t)2 + if})' denotes the value of the logarithm after 17 circles the points ± i | x — t \
in the negative sense. Hence,

/% — * | * — (I p * | X — 11
e"K" dvI+ - I = 2KeKuLi [ * e-K" dv + « f e~K" dv - 2iri [

I Jo Jo Jo

= —4wieR" cos K \ x — t |. (3.8)

Equations (3.7) and (3.8) together imply that I(x, y, t) has the form,

I = {-2eKy cos K | x - t 11 log K + Z Ux, y, t)Km, (3.9)
m = 0

where by (3.7) c0 = — 2y. Combining (3.5) and (3.9) we have finally,

G(x, y, t; K) — { — eK" cos K \ x — t \} log K + 21 Gr„(x, y, t)Km
m = 0

= —log K E Hm(x, y, t)Km + Z Gm(x, y, t)Km
(3.10)

the series converging for suitably small K. For reference we write down the first few terms:

H0 = —1 Hx = -y H2 = -i | x - t |2 + W,

Go = (« - 7) - log [(x - tf + y2]l/2.

For the case y = 0 all of the terms in the development may be obtained from formulae
given in [4],

With the developments (3.10) at hand we are ready to discuss u(x, y; K). Suppose
g(x) = gm(x)Km. Then substituting (3.10) in (3.3) we have,

/(*: K) - - Z Km(K log K) f1 1WJ.X, 0, 0
m = 0 J — 1

dt

+ - Z Km+1 f1 Kt)Gm(x, 0, t) dt = ± gm(x)Km on | x | < 1.
7T m = 0 J-1 m = 0

(3.11)

Now we remark that the power products Km(K log)" can be ordered according to in-
creasing degree of vanishing as K —* 0, i.e.

Km\K log K)n' ^ , , , , , ,
hm  =r^- = 0 11 m + n > m + n or m + n = m + n and n > n .0 K (K log K)

We proceed to develop the solution of (3.11) in the set of these power products. Passing
to limit K = 0 in (3.11) we find,

/oo(z) = lim /(x; K) = g0{x).
A'—<0

Then (3.11) becomes,
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f(x; K) — f00{x) — - K log K f /(<; k)H0{x, 0, t) dt = o{K log K) on | x \ < 1.
7T J — i

Dividing by K log K and passing to limit K = 0,

' Is [/(,gi.ggW] " i /_*' «<>dt -11" <"■«> ">■
Reentering in (3.11),

f(x; K) - f00{x) - foi(x)K log K + — f f(t; k)G0(.x, 0, t)
7T J — i

= gi(x)K + o{K) on | x | < 1.
Dividing by K and passing to limit K = 0,

/,0(x) = lim [/(:r; K) - f00(x) — f0i(x)K log K]/K = g^x) - - f f0o(t)G0(x, 0, t) dt.
K->0 IT J-i

We have indicated here the first three steps of a process which can be continued
indefinitely. The process leads ultimately to,

fix; D-li U(x)Km(K log K)\ (3.12)
m=0 n=0

That the successive fmn(x) can be determined by recursion one sees as follows. We say
f(x; K) has an estimate of degree (m, n) if,

f(x; K) = P(K, K log K) + o(Km(K log K)"),
where P is a polynomial (with coefficients depending on x) of degree (m, n). Since,

KG = -K log K + o(K log K)

we see that the product of KG with a polynomial of degree (m, n) is a polynomial of
degree (m, n + 1) plus terms o(K'"(K log K)"'1). Suppose then that we have shown
f(x; K) to have an estimate of degree (m, n), that is have computed fon , fol , • • ■ , fmn in
(3.12). Substituting this estimate in the integral in (3.11) we obtain a polynomial of
degree (m, n + 1) plus terms of o([K"'(K log /^)n+1], with coefficients determined by the
known quantities, /00, • • • Right hand side of (3.11) has estimates of degree (to, 0)
for all to, hence (3.11) yields for f{x; K) an estimate of degree (to, n + 1).

Substituting the series (3.12) and (3.10) in the integral representation (3.2) it is
readily seen that u{x, y, K) has the form,

Ku(x, y, K) ~ EE ujx, y)K"'(K log K)\ (3.13)
m=0 n=0

4. Convergence of the asymptotic developments.* The development (3.13) is asymp-
totic and the question arises as to whether the series actually converges to yield the
function u(x, y; K). For the special case g(x) = — e'Kl, which governs the diffraction of
waves by a rigid dock, an alternative procedure exists for obtaining the development
(3.13). This second technique answers the convergence question while at the same time
pointing up the relations which exist between the coefficients of the development.

*The idea of this section was suggested to the author by Professor Hans Lewy.
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For simplicity we consider only the even part of the solution that is the solution
of Problem (II) with g(x) = — cos Kx. The odd part could be treated in the same
manner. The solution has the representation (3.2) with f(x; K) a solution of the equation,

Kx; K) + — f f(t; K)G{x, 0, t; K) dt = —cos Kx on x < 1. (4.1)
7T J — i

G{x, 0, t; K) is defined as a function of complex K by (3.10), that is,

G(x, 0, t]K) = — {cos K | x — t |} log K + 2 Gm(x, 0; t)Km. (4.2)
m = 0

The usual method of successive approximations applied to (4.1) shows that the solution,
as a uniform limit of functions analytic in K, is analytic for | K \ ^ 0 sufficiently small.
Let K+, KT denote the image points of K on a logarithmic Riemann surface of K after
positive and negative circuits respectively of the origin. By (4.2),

G(x, 0, t; K+) — G{x, 0, <; K) = —2ki cos K \ x — t\

hence if we form (4.1) for K+ we find,

Kx, K+) + f f* f(t, K+)G(x, 0, t; K) dt (4 3)
r+i— 2iK J f(t, K+) cos K | x — t \ dt = —cos Kx.

Subtracting (4.1) from (4.3) and noting that / is even with respect to t

fix, K+) - /(as, K)+- I" K^x' °> l> V dt
TT J-i

/» +1 r» +1

= 2iK J f(t, K+) cos K j x — t | dt = 2iK cos Kx J f(t, K+) cos Kt dt

hence the difference, j(x, K+) — f(x, K) satisfies, except for a multiplicative constant
the same integral equation (4.1), as f(x, K) itself. Therefore,

/Or, K+) - f(x, K) = 2iKj(x, K) J /(<, K+) cos Kt dt

or,

f(x, K) — Kx,K") = 2iKj{x~,K~) J j(t, K) cos Kt dt. (4.4)

The function j(x, K) thus satisfies a non-linear difference equation in K. If we let,

X(2£) = J Kt, K) cos Kt dt

we find by multiplying (4.4) by cos Kx and integrating,

\(K) - A(/r) = 2iK\(K)\(K~). (4.5)
This difference equation for \(K) is still non-linear but we can form from it a linear
equation. As in the derivation of (3.12) we have from (4.1),
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f(t, K) = —1 + o(l) as K^O.
Hence,

X(.K) = -2 + o(l) as K-+ 0 (4.6)

so that \(K) [and also A(if~)] is different from 0 for K sufficiently small. Thus for small
K, (4.5) can be divided by \(K) X(K~) to yield,

1 1 = UK.
X(2T) HK)

It follows that,

T = 77FI = lo§ K + or = V ' (4-7)
MK) T S(K) — — log K

7T

where S(K) is single-valued, and being bounded by (4.6), is a power series, i.e.,

S(K) = | (l + E Sjrj. (4.8)

Substituting (4.7) in (4.4) we find,

2 iK
/(*, K) -

Now observe that,

1 +
S(K) - - log K

7r

f(x, K~) = 0. (4.9)

t(K~) = S(K) - - log K + 2iK = t(K)
7T

1+— 2iK
S(K) - - log K

IT

Also t(0) 0, hence for sufficiently small K (4.9) can be written

r(K)Kx, K) - t(K-)Kx, K-) = 0

i.e., r(K)f{x, K) is a single-valued function, p(x; K), which is continuous at K = 0,
and thus,

/(*, K) =   p(x, K)= ± pMK\ (4.10)
S(X) - - log K

7T

From (4.10) two interesting facts may be observed. First we can write, since S(0) = J,

/(x, K) = 2p(®; if) 1 _ ,

where

z® = 2 - log x - E sjk\
n— 1

Since | Z{K) \ < 1 for if sufficiently small, say | if | < K0 , we have,
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f(x, K) = 2p(x; K) Z (Z(K)Y (4.11)
n-0

which it is readily seen leads to a convergent double power series in K and (K log K).
Second we see by (4.10) and (4.11) that j{x, K) is completely determined by the two

analytic functions p(x, K) and S(K). That is to say in the double series development

f(x, K) = i: f: amn(x)Km(K log KY (4.12)
m=0 n=0

for f(x, K) there are at most two simple infinities of the coefficients amn which are sufficient
to determine the others. In reality the analytic functions p(x; K) and S(K) are related
so that only a single infinity of the coefficients need be determined. One sees this by
using (4.11) to express the Sn and pn(x) as functional of f(x: K), i.e., of the a,,(x). If
the operation in (4.11) is carried out and the series (4.12) is substituted on the left, we
obtain a series of relations, the first few of which we write down here:

2p0(x) = a00(x),

7r

2pi(x) - 2p0(x)Si = a10(x),

~2 Po(x) ~ &02 |
IT

apM _ = an{x).
7T TV

We see from these relations first that the p„(x) are determined by the ai0(x) and the
S„ and then that the a(i{x) for j > 1 are determined by the ai0(x). The pn(x) and {»§„}
and hence f(x, K) are completely specified if one knows the values of the ai0(x) i = 0,
1, 2, • • • .

The intermediate step of computing the aif(x) may be eliminated as follows. Sub-
stituting (4.10) and (3.10) in (4.1) yields,

p(x, K)+- f' p(t, K){-K log K (cos K \ x - t |) + Z Gm(x, 0, t)Km+1} dt
TV J — i m — 0

= — cos Ka;^(S(ir) — ̂  log K J on | x | < 1.

We can equate here terms which involve log K and those which do not, obtaining

1 f+1 1— / p(t, K) cos K | x — t | dt = - cos Kx on | x \ < 1 (4.13)
IT J-i T

p{x, K) + - r p(t, K) ± Gm(x, 0, t)Km+1 dt = -S(K) cos Kx. (4.14)
TT J— l m = 0

Since p(x, K) is an even function of x (4.13) may be rewritten,

J p{t,K) cos Kt dt = —1. (4.15)
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Set p*(x, K) = p(x, K)/S(K). Recalling that <S(0) 0 p*(x, K) is an analytic function
of K for K small, i.e.,

P*(x, K) = i; pl{x)K\
n™ 0

Substituting in (4.14) and equating coefficients of KT, r = 0, 1, 2, • • • , yields, p*0 = — 1,

p*{x) + - E ( p„(t)Gr-i-n(x, 0, t) dt
T n-0 J-I

= (~1)"1 x2r if r is even, r > 0 (4>I6j
2 r!

= 0 if r is odd.

Equation (4.16) determines the pr(x) recursively. For example:

P*(.x) = -1,

pl(x) = f p*0(t)G0(x, 0, t) dt = - («' — y),
IT J-i IT

—- [(1 + x) log (1 + x) + (1 - a:) log (1 — x) — 2x].
IT

Once the p*(x) are found Eq. (4.15) can be used to determined S(K). Substituting
p(x, K) = S(K)p*(x; K) in (4.15) and equating coefficients of K' yields,
■I I»/2] / -i \ m « + l

2Sm
i [ »—n/2 J / C+1

+ E E sn pU-*J2m dt — 0, i = 1, 2, 3, ... .
n-1 m-0 Zmi J-i

Equation (4.17) determines the Sn recursively since the coefficient of 5,- is,

r+iJ p*(t) dt — — 2 ̂  0.

For example:

Si = I /_+1 ptG) dt = i - * - | (log 2 - 1).

Once (S(if) and p*(a;; if) are found, p(x; 2Q is obtained as their product.
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' [z] denotes greatest integer not greater than z.


