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EIGENOSCILLATIONS OF AN ELASTIC CABLE*

BY

PENTTI LAASONEN**
University of California, Los Angeles

Summary. The eigenoscillations of a cable, supported at its end points, in a homo-
geneous gravitational field is investigated under the assumption that the bending
stiffness is negligible but the behavior with respect to tension stresses is perfectly elastic.
The problem involves two coupled second order equations and one independent second
order equation; it is shown to be definitely self-adjoint and an iterative method for its
solution is suggested.

In the particular case of a shallow cable, that is with negligible sag, the asymptotic
eigenvalues are obtained. It turns out that the gravitational field has such a "stiffening"
effect that the eigenvalues related to some oscillation modes may be substantially
greater (the lowest of them eightfold) than those given in the classical theory on vibrating
strings.

Notations.

A = cross sectional area
L = total length
s = arc length parameter
p = mass density
fi = pA = mass per unit length
E = Young's modulus;
x, y, z rectilinear coordinates of a typical cable point; the gravity acting in the

direction of negative //-axis, the end points of the cable having coordinates
(± H, 0, 0);

u, v, w displacement components from equilibrium position;
F = tension force acting on the cable;
/ = increment of the force due to the motion;
a = length constant determined by Equation (3);
e = ang/EA = apg/E equilibrium strain at the lowest point;
a = L/2a = characteristic parameter;
co = circular frequency of eigenoscillations;
A* = co2a/g \ eigenvalue parameters;
X = K2 = wl? I -\ag J
p = s/a, q = 2s/L dimensionless variables;
A, B, M, N, S, T matrices.

Derivation of the equations. From Hooke's law follows

x'.2 + y? + z? = (1 + F/EA)2. (1)

of the cable when unstrained;
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Hence the components of the tension force are

Fx', Fy', Fz',
1 + F/EA ' 1 + F/EA ' 1 + F/EA'

The influence of the flexural rigidity being neglected, Newton's law gives

Fx', V _ „
1 + F/EA), >xX" '

(i + f'/ea), = y" + 9^' ®
( Fz'. V _ „
u + f/eaJ, I1Z" •+ F/EAj

If time derivatives are taken to be identically zero, then Eqs. (1) and (2) give rise
to the stationary equilibrium solution. Using boundary conditions and choosing the
origin of s at the lowest point one obtains

x0 = a log [s/a + (1 + s2/a2)1/2} + es,

2/o = (a2 + s2)1/2 + d/2a + K,

Zo = o
[F0 = ng(a2 + s2)1/2.

The integration constants a and K in these expressions are determined by the conditions

log [L/2a + (1 + L2/4a2)1/2] + LPg/2E = l/2a, (3)

(1 + L2/4a2)1/2 + Jjpg/ZaE + K/a = 0.

After introducing the small oscillation displacements by

x(s, t) — x0(s) + u(s, t)

y(s, t) = y0(s) + v(s, t)

z{s, t) = z0(s) + w(s, t)

F(s, t) = F0(s) + /(s, t)

and substituting these expressions in (1) and (2) the linearization is performed:

u[ + sv'./a f_
(1 + s2/a2)W2 EA

( j + tEA(l + s2/a2)u', V _
\(1 + s2/a2)1/2[l + e(l + s2/a Y/2]I, ~ '

( sf/a + eEA(l + s2/a2X )' _ „
\(1 + s2/a2)1/2[l + c(l + s2/a2)l/2]J. ~ "V" '

(

v(l + s/a) [I + e(l + s2/a2)1/2]J

eEA(l + s2/a2)w.' V _
(1 + s2/a2)1/2[l + £(1 + s2/aT2]), ~

When / is eliminated, the dimensionless variable p = s/a introduced, and the variables
separated by m(s, t) = u(s) ■ e'"', etc., then the following system of ordinary differential
equations is obtained:
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/u' + & + «q + pyyy , X*M _ o
Ul + V2)\l + 6(1 + ?2)I/21/ + 0'(1 + P2)[l + 6(1 + P2)1/2]

pu' + p2v' + e(j + p2)3/2v'^'
.(1 + p2)[ 1 + e(l + p2)1/2] + \*v = 0,

(a+^ + .y + - °- w
Two first equations apparently determine the modes and frequencies of the eigen-
oscillations in the xt/-plane, whereas the third equation applies to the perpendicular
oscillations, completely independent of the first ones. In the following the main atten-
tion will be given to the first oscillations.

The self-adjointness of the problem. Since the eigenvalue problem, consisting of
the two second order differential equations (4) and boundary conditions

w(±a) = w(±a) =0, (a = L/2a)

may be regarded as arising from a regular variational problem, it is self-adjoint. The
exact definition of a definitely self-adjoint problem, due to Bliss [1, 2], requires that if
the problem is written in the form

-j- u = Au + XBu,dp

Mu(a) + Nu(6) = 0,

where u is an n-vector, A and B are (n X n) matrices and M and N constant (n X ft)
matrices with (M, N) being of rank n, then there exists a non-singular matrix T such
that the following conditions are fulfilled:

/ T + TA + A'T = 0,dp (6)

TB + B'T = 0,

MT"'(a)M' = NT_1(6)N', (7)

(here the prime stands for the transposition of the matrix in question) and that the
matrix

S = T'B

is symmetric and definite or semi-definite.
In the present case, solve the Eqs. (4) with respect to u" and v" and regard u, v, u',

and v' as four elements of u. One finds then that the coefficient matrices are

A = 16(1 + p2Tr-{ 1 + 6(1 + p2)1'2]

0 0 0 0
0 0 0 0
0 0 p + tp(2 - p2){ 1 + p2),/2 p2 - 6(1 - 2p2)(l + p2)I/2

0 0 -1 - 6(1 - 2p2)(l + p2)I/2 -p - 3ep(l + p2)'/2
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B = (i + v r

0 0 0 0
0 0 0 0

-p2 - «(1 + p2)3'2 V 0 0

v -1 - e(l + p2)3/2 o 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

(M, N) =

The solution for (6), (7) is now

1T = 6(1 +P2)[1 + t(l +P2)1/2]

o o i + €(i + vyn +p
0 0 +p p2 + e(l + vT2

-i - e(l + p2f/2 -p oo

-p -p2 - e(l + pT2 0 0

and the matrix S is semi definite:

10 0 0

s = 0 1 0 0
0 0 0 0

.0 0 0 0.
The definitely self-adjoint character of the problem thus being proved, a number of

properties associated with such problems may be applied for the present problem: for
example, the existence of a countably infinite number of eigensolutions, the expansion
theorem, etc. The orthogonality of two independent eigensolutions (ut , v,), (u2 , v2)
now takes the form

/ + a (u^ + ViV2) dp =
- a

0.

Furthermore, an iterative method for the determination of the eigensolutions is applicable
and proved to be convergent [3]. The sequence of consecutive iterates is obtained directly
from (4):

'i+i = / {(-(TfTr "e) /Ui dp + u+^p /dv}dp'

v*« = / {(1 +vr* fUidp + {'or^pT1 ~ e) IVi dp\ dv]
the integration constants must be chosen to make the functions satisfy the boundary
conditions.
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Finally, it may be seen directly from the form of the Eq. (5) that the problem for the
determination of the lateral oscillations is definitely self-adjoint also and hence subject
to similar properties and procedures as those mentioned above.

Case of a shallow cable. The general solution of the problem above depends es-
sentially on two dimensionless parameters only, the relative cable length a = L/2a
and the minimum strain e. The latter is always smaller than the ratio between the yield
stress and Young's modulus and hence small compared with 1. In the case of a shallow
cable the first parameter also is small compared with 1, since a is approximately equal
to the smallest radius of curvature. For a closer study of this particular case we replace
the variable p by the new variable

q = 2 s/L = p/a

in order to have fixed boundary values q = ± 1. The Eqs. (4) and (5) thus obtain the
form

+ \u = 0,
(8)

/ tt' + aqi>' + «(1 + a q2)3/2u' V
Wl +«V)[ 1 +«(1 + «Y)l/$]/

(aqu' + a2 q2v' + e(l + a2q2)3/2v'\' , ,
I . 2 2U1 . /r~T 2 2\l/2l ) + Xt> = 0,L\f(l+ag)[l + e(l+a{) ]/

)' + Xw = 0, (9)(1 + aY)-i/! +

where the prime now indicates differentiation with respect to q. The pertinent boundary
conditions are

w(±l) = v(±l) = w(±l) = 0. (10)

After noticing that the last equation apparently has the asymptotic eigenvalues

X ~ (nir/2)2, n = 1,2, • • • ,

for a and t tending to zero, we will leave this equation aside and study the problem
(8), (10) for small values of a and e. By letting, separately, a —» 0 one arrives at the
equations

u" + e\u = 0,

+ (1 + e)Xt; = 0,

which are not coupled and give the well-known eigenfrequencies of longitudinal and
transversal oscillations. Since there is, for a small e, a wide gap between the smallest
eigenvalues 7r2/4e and ~ x2/4 of both groups, it is of interest to find out what are actually
the smallest eigenvalues, say when eX may be regarded to be still essentially smaller
than 1. To this end observe, that the Eqs. (8) are equivalent with the following two
equations, where Ci and C2 are arbitrary integration constants:

u' + aqv' + j" u dq + aq J v dqJ + eCi + tC2ctq = 0,

aqu' — v'
+ (1 + aq*)

(11)

 — + xj^ag J u dq — ̂  v dq + C^q — C2 = 0. (12)
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Then, considering first the solutions of group I, that is, those for which u is odd and v
is even, one immediately finds that C2 = 0. Assume that X remains bounded for a and
€ tending to zero and, since both integral terms of Eq. (11) have e as a factor, neglect
these terms besides two first terms:

u' -(- aqv' -(- tC\ — 0. (13)

Further, substitute u from this equation into the Eq. (12) and neglect all terms which
are not of the lowest order in a or e:

v' + X f v dq — Cicxq = 0.
Jo

All even solutions of this equation which satisfy the condition y(l) = 0, are, up to a
constant factor, of the form

v = cos icq — cos k ,

whereby Ci and X are

C\ = — k2 cos k/oi, X = K.

The substitution into (13) gives odd solutions

u = afsinxg/if — q cos nq + tK q cos k/cl\.

From the condition u( 1) = 0, k is determined as a solution of the characteristic equation

tan k/k = 1 — k t/a .

Hence, the roots of this equation squared give the eigenvalues.
Quite similarly one finds that the asymptotic solutions of group II, whose u is even

and v odd, are
"X = nV,
u = — (a/n7r)(cos nir + cos rnrq + n-wq sin nwq),

v = sin rnrq.

Hence in group I the solutions, the eigenvalues as well as the modes of eigenfunctions,
depend on the ratio e/a2, whereas in group II the solutions are independent of this
ratio. The dependence is illustrated in Fig 1, where the solid curves give some lowest
eigenvalues from the group I, the broken lines eigenvalues from group II. In particular,
for a /e = wV2 there exist double eigenvalues nV2.

Finally, it may be indicated what the physical significance of the ratio e/a is. Ex-
pressing e as the ratio o~/E, where a is the equilibrium stress at the lowest point, and
a by

a = L/2a = Lpg/2eE - Lpg/2<r,

we obtain

e/a2 = 4 a3/L2p2g2E = 4-(L0/L)2,

where the characteristic length

L„ = W/E)U2-{c/Pcj)
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Fig. 1
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depends on the material in question and its equilibrium stress. For most materials this
length, when computed for stresses reasonably close to their tensile proportionality
limit, amounts to several hundreds of feet. For instance, for copper, <r = 30,000 psi,
L0 = 330 feet, and for steel, <j = 40,000 psi, L0 = 430 feet. Therefore, the eigenfrequencies
of a tightly stressed cable or wire do essentially differ from those corresponding to the
well-known eigenvalues A = (nir/2)2 only at spans of length comparable with this
measure.
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