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THERMAL SHOCK IN AN ELASTIC BODY WITH A SPHERICAL CAVITY*

BY

ELI STERNBERG and J. G. CHAKRAVORTY
Brown University

Summary. This investigation aims at the dynamic thermoelastic response of an
infinite medium with a spherical cavity to a sudden uniform change in the temperature
of its internal boundary. By means of the Laplace transform, a closed solution to this
problem—exact within classical elastokinetics—is obtained in terms of error functions
of real and complex arguments. The ensuing temperature stresses are compared with
the corresponding quasi-static results.

Introduction. The conventional quasi-static treatment of transient thermoelastic
problems rests on the assumption, apparently introduced first by Duhamel [l]1, that the
inertia terms may be neglected in the governing field equations. The quality of the
approximate solutions thus obtained evidently depends both upon the magnitude of
the time-gradients inherent in the temperature field and upon the size of the relevant
intrinsic inertia parameters.

Duhamel's hypothesis has been the object of several recent studies. The earliest
investigation of this kind is due to Danilovskaya [2] (1950), who determined the dynamic
thermal stresses induced in an elastic half-space by a sudden uniform heating (or cooling)
of the entire boundary, if the body is constrained to a uniaxial motion perpendicular
to the bounding plane2. Later on, Danilovskaya [4] generalized her solution to accommo-
date convective boundary conditions. Still more recently, the present authors [5] estab-
lished explicitly the thermal displacements associated with the stresses given in [2], [3]
and extended the completed solution to the case of a gradual (ramp-type) change of
the surface-temperature. Related studies in the theory of beams and plates were carried
out by Boley [6] and by Boley and Barber [7]. Finally, we mention thermoelastic in-
vestigations by Nowacki [8] and Ignaczak [9] in which the inertia terms are taken into
account, although neither of these papers is concerned with a quantitative assessment
of the dynamic effects thus arising.

As was pointed out in [5], the problem treated in [2], [3], [5] suffers from two deficiencies
as a vehicle for examining the adequacy of the traditional quasi-static methods in
transient thermoelasticity. First, the artificial constraint of the medium imposed in
[2] results in a severe degeneracy of the corresponding quasi-static stress distribution,
the normal stress perpendicular to the boundary being identically zero. Second, the
absence of a characteristic length in this particular problem causes the pertinent inertia
parameter to be hidden in the dimensionless time and distance scales whence its influence
upon the dynamic effects sought, is obscured.

For the preceding reasons it appears desirable to examine the inertia effects en-

*Received July 1, 1958. The results communicated in this paper were obtained in the course of an
investigation conducted under Contract Nonr 562(25) with the Office of Naval Research, Department
of the Navy, Washington, D. C.

lumbers in brackets refer to the list of references at the end of the paper.
2The results contained in [2] were independently reached by Mura [3] (1952).
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countered in a less degenerate thermoelastic space problem. This leads us to consider
an infinite, homogeneous and isotropic, elastic medium with a spherical cavity, the
boundary of which is exposed to an instantaneous change of temperature. We assume
that the body, which is free from loading, is initially at rest, and seek the ensuing
thermal stresses and displacements if the temperature field obeys the (uncoupled)
heat-conduction equation. The corresponding quasi-static solution was given and dis-
cussed in [10]. It should be mentioned that the present dynamic thermoelastic problem
is related to an ordinary problem of elastokinetics, i.e. to the determination of the stresses
produced by a sudden uniform pressure applied to the surface of a spherical cavity in
an infinite elastic medium. An exact closed solution to this more elementary problem
was obtained first by Jeffreys [11] (1931) and has since been rediscovered by various
subsequent authors.

Formulation of problem. Dimensionless variables. Let (r, 9, <p) respectively denote
the radial coordinate, the co-latitude, and the longitude of a spherical coordinate system.
Suppose that the medium under consideration occupies the region a < r < where
a is the radius of the spherical cavity. The thermoelastic problem described in the
Introduction is characterized by polar symmetry about the origin, whence

T = T(r, t); ur — u(r, t), ue = uv = 0, (1)

in which t is the time, T the temperature, while (ur , uB , uv) designate the spherical
components of the displacement vector.

If T0 is the constant temperature suddenly assumed by the internal boundary r — a,
and k stands for the thermal diffusivity of the material, we may introduce a dimensionless
radial coordinate, time and temperature, by means of

_ r Kt T . .
p = a ' T = ? ' * = t; (2)

With reference to these dimensionless variables, the independent temperature problem
is governed by the (uncoupled) heat-conduction equation

a 2 ' a — a ' ^ 'dp p op or

subject to the initial condition

<p{p, 0) = 0, (4)

together with the boundary and regularity conditions

<p( 1, r) = h(r), <p(p, r) —> 0 as p —> 0° , (5)

where h(j) is the Heaviside step-function, given by

h(r) = 0 for — oo < r < 0, /i(r) = 1 for 0 < t < oo . (6)

We turn next to the characterization of the thermal displacements and stresses
associated with the temperature field <p(p, t). To this end, let a dimensionless radial
displacement u*, as well as dimensionless spherical components of normal stress j*
and <r* , be defined through



1959] THERMAL SHOCK IN BODY WITH SPHERICAL CAVITY 207

U* (1 + v)aT0a U'

1 - v „ 1
2(1 + v)aToH ' *' 2(1 + v)aTolx ai

(7)

in which <rr , <re are the corresponding physical components of normal stress, whereas
M, v, and a denote the shear modulus, Poisson's ratio, and the coefficient of thermal
expansion, respectively. In view of (1), the spherical components of shear stress vanish
identically and av = <re . Finally, it is expedient to introduce a dimensionless inertia
parameter y, defined by

7 =c^' ®

where c is the velocity of irrotational waves,

, 2(1 - v)n (Q)
C (1 - 2v)(i ' W

/J being the mass density of the material.
The displacement equation of motion now takes the form

d\* , 2du* 2u* 2 d\* . dip
-j-5- + - r = 7 -T2- + , (10)op pop P OT op

while the stress-displacement relations become

(1 - 2v)cr* = (1 - v) + 2v- - (1 - v)<p,dp p

v*
(1 — 2v)<r% = v ~— +   (1 — v)<p.dp p

(11)

Once <p(p, r) is known, the solution of the thermoelastic problem at hand reduces to
the determination of a function u*(p,r) which satisfies (10), meets the initial conditions

u*(P> o)=o, rri =°> d2)
L OT Jtp.O)

and is such that the stresses (11) conform to the boundary condition

c*( 1, r) = 0, (13)

as well as to the regularity conditions

<r*(p, t) -> 0, <7*e{p, r) —> 0 as P CO . (14)

We observe that the quasi-static formulation of the present problem3 is obtained by
setting 7 equal to zero in (10) and by deleting (12).

Introduction of the Laplace transform. Solution in the transform domain. The solution
of the elementary heat-conduction problem governed by (3), (4), (5), is well known4
and admits the closed representation

3See [10],
4See, for example, [12], p. 209.
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<p(p> r) = - $(£), £ = 57XT75 > (15)
P AV

where

<£(£) = erfc (Q = -I73 [ exp (-rj2) <^77 (16)
7T J £

is the complementary error function. For future convenience we recall5 here that

U0) = 1, *(*)-» 0 as {-» 0=, ^(-|) = 2 - tf®, (17)
and cite the power-series development

Kt\ — 1 ^ y (~ 1)"$2"+1 ,~ 1 tt1/2 S(2n + 1) (»' (18)

as well as the semi-convergent expansion, valid as Re(f) —> + <»,

With a view toward the determination of the thermal displacements and stresses
arising from the temperature distribution (15), let

U{p, s) = L{u*(p, t) } = f exp (st)u*(p, t) dr, (20)
Jo

so that U(p, s) is the Laplace transform with respect to r of w*(p, r), s being the transform
parameter. From (15),

*(p, s) = L{<p(p, r)} =\ exp [-(p - l)sl/2j, (21)8
pS

whence applying the transform to (10), and bearing in mind (12), we reach the ordinary
differential equation

d2U .2 dU (2 , 2 2\TT / 1 . 1 \ , , 1N 1/2, ,0<Vl
~d? + ~pTp~\7 + ls)u = "W75* ?ijexp[~(p" 1)8 ]" (22)

Furthermore, by virtue of (11) to (14), (20), (21), we arrive at the transformed boundary
and regularity conditions

["(1 - v) + 2, - - (1 - »)<f] = 0,L dp p J(i.»)

U(p, s) —* 0 as p —> 00 .

(23)

Equation (22) is reducible to an inhomogeneous modified Bessel equation. Its general
solution is given by

U = V(P,s) + W(P,s), (24)

6See [13], p. 147.
6See [14], p. 246.
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where W{p, s) is a particular integral of the complete equation, and

V(p, s) = MS I3/2(ysP) + K3/2(ysp). (25)
P P

Here, A^s), X2(s) are arbitrary functions of s, while /V2 and if3/2 designate modified
Bessel functions of the first and second kind, respectively. As is readily confirmed, W
may be taken in the form

1 4- <?1/2
W(P, s) = 'Vs exp [—(p - l)s1/2]. (26)

p s (7 s — 1)

On the other hand, (23) to (26), after an elementary computation, yield

T7Y \ (1 ~t" 7ps) {t2s2 -f- 2p[l -|- s1/2]} r , . , . ,
1 {p' s) = PV( 1 - 72s)[(ts + p)2 + 92] 8XP [_7(p " )s]' ( }

provided

Inverse transforms. Solution of problem. We now proceed to establish the desired
inverse transform of U(p, s). For this purpose we note from (26) that

W =W1(p,8)W,{p,»), (29)

if
Wi = P'\y2s -I)'1, W2 = (s"2 + Ps~3/2) exp [-(p - l)s,/2]. (30)

Moreover, according to known results7,

W%p, r) = L-'iW^p, s)} = ~ exp (t/t2),
7 P

wt(p, t) = L_1{TT2(p, s)} = (p + l)(r/ir)1/2 exp (-£2) + ^ ^(£) + t^(|),
1 2

\ 1/2 / >2N , 1 ~ P

(31)

where f and ^(£) are defined in (15), (16). From (29), (31), and the convolution theorem,
follows

w f(p, t) = L '{^(p.s)} = f w*Y{p, t — 17)w%{p, rj) dij. (32)
Jo

Substitution of (31) into (32), and repeated use of integration by parts, ultimately
lead to

W*(p, r) = ^2 [(p2 — 2r — 1 - 2y2)yp{Q

— 2(p + l)(r/ir)1/2 exp (—|2) + 7Vi(p, t) — ypi2(p, t)]..

The auxiliary functions 4>i , \p2 appearing in (33) are accounted for by

(33)

'See [14], No. 1, p. 229; No. 4, p. 245; No. 7, p. 246.
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ii(p, t) = + L-) exp (A +

(34)8
+ *(«-V) exp ~ V1) = 71?

*.(p, r) = exp

- *(* - v)exp (? ~ ̂ v1)-
Our next task consists in finding the inverse Laplace transform of V(p, s) in (27).

Evidently,

v*(P, r) = L-{F(p, s)} = h^)L~l{G{P, s)} (35)
with

a; = r — 7(p — 1), (36)

if /i again denotes the Heaviside step-function given by (6), and G is the coefficient of
the exponential function in (27). Moreover, a partial fraction decomposition of G(p, s)
results in

GCp, « = 7' ^ 1"-^ - (37,7qp (1 + 2yp + 27 p) Ls — 7 s — kJ'

where "Re" stands for "the real part of", k is the complex parameter defined by

k - , (38,
7

and
F(p) = — q(y + p) + i[ 1 + p(7 — 27 p — p)]. (39)

The inverse of G(p, s) is readily found with the aid of the available inverse transform

= ^t1 * ^r"2)] exP M ~ f Q,/2> (40)9

in which X is a constant. Thus, (35) and (37) imply

v*(p, t) = |~T(T _|_ p) exp (u/72)
P L
+ A Re {F(p)[yW2/y) exp (o,/T2) - k~3/^(hS)1/2 exp (ko)

+ B exp (M + C[co + 2(co/ir)1/2] + £>]} .

(41)1

The letters A, B, C, D, appearing in (41), refer to the following auxiliary functions of
v and 7:

8Note that the arguments of the complementary error function xp here are £ + r^/y or J — t1 /y, as
indicated.

9See [14], No. 2, p. 233.
10Here, as well as subsequently, k* stands for the principal value of this root.
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2jPA =
yq( 1 + 2yp + 2y p) '

B = £ + k~* + k~3/\ C = t2 - k~\ D = 74 - A;"2.

(42)

From (24), (32), (35), we have
w* = v*(p, r) + w*(p, r), (43)

where v* and w* are given by (41) and (33).
The thermal stresses associated with the displacement (43), are obtained by sub-

stitution of (43) into (11). If

E = j-p = -1 ~ »(1 + 2r)P, (44)

the results of these lengthy computations become:

** = ~7 [[p2 + 2tp(t + p)] exp (co/72)

+ 4 Re {[F(p)(p + 27p) - EyP]y2t(ul/2/y) exp (co/72)

+ [Ep - F(p)(2p + ykp)]k~3/2t(kU2co,/2) exp (fao)

+ B[F(p)(2p + ykp) — Ep] exp (fao)
+ C[2pF(P) - Ep][o, + 2(o.A)1/2]

']+ F(p)(2pD + ypCf) — DEp\

-)—3 [(2t + 2y2 + 1 — p2)^(£) + 2(p + 1)(t/7r) exp (—£2)
P

~ + 72)^i(p, r) + ypfaip, t)],

and, setting

<7*« = I [mp2 - 7(7 + p)] exp (co/72)

+ A Re {[F(p)(mp — 7) — £,7mp]7V(co1/2/7) exp (co/72)

+ [Emp - F(p)(ymkp - l)r3/2f(A;1/2co,/2) exp (fa0)

+ B[F(p)(ymkp — 1) — Emp] exp (fao)

- C[F{p) + EmP][co + 2(coA)I/2]

+ F(p)(Cymp — D) — DEmp) J

~ 2/ + 272 + 1 + p2)^(£) + 2(p + 1)(t/tt)i/2 exp (—£2)

— (72 — mp2)^(p, r) + 7PV^(P, t)].

(45)

m = " = ^2 — - , (46)1 — 2? p p v 7

(47)
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This completes the formal solution to the thermoelastic problem at hand. One con-
firms by direct substitution, with the aid of (17), (18), (19), that the displacement (43)
and the stresses (45), (47), indeed satisfy the field equations (10), (11) if w ^ 0, and con-
form to conditions (12), (13), (14).

Properties of solution. Quasi-static and steady-state limits. Examining the structure
of the solution obtained in the preceding section, we observe that the displacement
(43) and the stresses (45), (47), each contain a term which has the step-function h(co)
as a multiplier. If y > 0, these terms reflect the presence of a spherical shock-wave
issuing from the boundary p = 1 and propagating outward with the velocity c
of irrotational waves, given by (9). The remaining terms are diffusive in character and
correspond to a signal which is instantaneously received throughout the entire medium.

In accordance with (6), (36), we have

r = y{p — 1), (48)

provided p and r momentarily designate the dimensionless radius of the wave-front
and the dimensionless time at which this radius is attained. While the time and space
derivatives of the radial displacement suffer discontinuities at r = y (p — 1), u* itself
depends continuously on p and r for l<p< °°)0<r< ^ ; as required by the physical
continuity of the material. On the other hand, the stresses exhibit finite jump-discon-
tinuities at the wave-front. Specifically,

<r*[p, 7(p - 1) +] — <r*[p, t(p — 1) — ] =

c*[p, 7(p - 1) +] — oi[p, t(p — 1) — ] =

1
(1 — 2v)p '

(1 — 2v)p

(49)

Thus, a% remains continuous only if v = 0; the jumps in both stresses are independent
of the inertia parameter y and become unbounded as v —* 1/2, if p. remains fixed in this
limit.

It is interesting to compare (49) with the stress-discontinuities generated in Jeffreys'
problem [11] by a radial pressure of magnitude <r0 , which is suddenly applied to the
spherical boundary and is steadily maintained thereafter. Taking, in this instance,
r = ct/a, <t* = orr J(jo , a* = ao/cn , one has here

<r*[p, (p — 1) +] — <r*[p, (p — 1) —] = — -
p

<T*[p,'(p — 1) +] — f*[p, (p — 1) — ] = —(1 — v)p

(50)

In contrast, the stress-discontinuities arising from the thermal shock in Danilovska.ya's
problem [2] of the half-space are independent of the position of the plane wave-front
and persist undiminished for all time.

As the inertia parameter y approaches zero, while p and r are held fixed, the dynamic
solution to the present problem should tend to the corresponding quasi-static solution.
Carrying out this cumbersome limit process, which necessitates repeated use of the
properties of \p cited in (17), (18), (19), we obtain:
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"\
1 t),
p

r), <r*e = A^(p, t) — <p(p, t),
P P

(51)

where

^(p, r) = £ V2<p(v, t) dr]

= i(p2 — 2t — 1)iA(£) — (p + 1)(t/7t)1/2 exp (—I2) + T + 2(t/x)1
(52)

Equations (51), (52) are identical with the quasi-static results deduced directly in [10].
As pointed out in [10], the displacement u* in (51) vanishes identically on the boundary
p = 1, which remains fixed for all time. This curious conclusion fails to apply once inertia
effects are taken into account. It should be mentioned that a quasi-static solution (in
infinite series form) to the companion problem of a solid sphere whose surface temperature
is suddenly altered, was given by Griinberg [15], as early as 1925; the same problem
was reconsidered by Melan [16], [17]. Trostel [18] presented a formal quasi-static series
solution to the general axisymmetric transient thermal-stress problem for a spherical
shell of arbitrary thickness.

Next, consider the limit of (15), (43), (45), (47), asr-> «>, for fixed p and y. Here
we find, after a tedious computation,

<p = ~ , u* = i(l - P 2)i
P

r% = -Kp'3 + p").

(53)

These values of displacement and stresses also characterize the limit of (51) as r —» 0.
Consequently, the dynamic and the quasi-static solution approach the same steady
state. Formulas (53) are in agreement with the appropriate steady-state results for
a spherical shell.11

Numerical results. Discussion. We turn, finally, to the discussion of certain numerical
results based on the dynamic solution to the transient thermoelastic problem treated in
this paper. Our main objective, in this connection, is to illustrate the character, and
assess the magnitude, of the departures from the analogous quasi-static results. The
space and time dependence of the temperature field (15), as well as of the quasi-static
displacement and stresses (51), were discussed extensively in [10]; the corresponding
diagrams need not be reproduced here.

The dynamic solution, in contrast to (51), depends not only on p and r, but involves
also the inertia parameter y and Poisson's ratio12 v. An inspection of (43), (45), (47),
together with the equations defining the various auxiliary functions, reveals that these
formulas are expressible exclusively in terms of elementary functions and error functions
of real argument, provided co = r — y(p — ,1) < 0. For r > y(p — 1), however, that
is, for points lying behind the wave-front, the displacement and stresses contain, in

"See, for example, [19], p. 420. See also [20].
12Note that the dimensionless quantities u*, <r* , and <r* in (51) are independent of v. See (7).
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addition, the complementary error function of complex argument ^(&1/2co1/2), in which
k is the complex parameter (38). According to (16) and (38),

*(M'/2 = "its f exp (if — t)2 — 2iyrf) dv,
TT J x

, [j_ y _ [j_ + T) j"'_
(54)

where p and q are given by (28).
While dense tabulations of ^(z), for real z, are available in [21], the existing tables

for complex z appear to be inadequate for our purposes.13 This fact, along with the
general unwieldiness of (43), (45) and (47), complicates the numerical evaluation of
the present results. The magnitude of y is bound to be exceedingly small compared to
unity in applications which are of physical interest.14 It is natural, therefore, to seek

-0.9

-r

-1.2

Fig. 1. Time-dependence of <r*e at p = 1 for y = 1/5, v = 1/4.

"Approximate methods for the computation of the error function of complex argument are dis-
cussed by Rosser [22],

14If a = 1 in. and the material is steel, y is of the order of 10~7.
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O.I

0.01.

Fig. 2. Time-dependence of a* at p =2 for y — 1/5, v = 1/4.

asymptotic expansions for u*, a* , and a% , in the neighborhood of y = 0, with the aid of
the semi-convergent development (19). Unfortunately, the asymptotic expansions thus
reached break down at p = 1 and at r = 0; for this reason, they fail to supply useful
approximations to the solution in the most significant range of position and time.

Figures 1, 2, 3 show the time-dependence of at p = 1, 2, 3, respectively, for v = 1/4
and 7 = 1/5. This unrealistically large value of the inertia parameter was chosen in
order to bring out clearly the qualitative nature of the dynamic effects here involved.
The underlying computations necessitated appropriate tabulations of the complex
error function (54), which were carried out on a 650 I.B.M. electronic computer. The
corresponding quasi-static curve (7 = 0), has been included on each of the diagrams
under discussion.

In Fig. 1, the dynamic stress values are seen to undergo a pronounced oscillation,
after which they approach the constant quasi-static value r) = — 1, which coincides
with the steady-state boundary-value of <r% . It is interesting to recall that the boundary-
values of the transverse normal stress in Danilovskaya's problem [2], [5], do not exhibit
any dynamic effects. In Figs. 2, 3, the dynamic curves display the jump discontinuity
(49) at the wave-front and thereafter rapidly approach the corresponding quasi-static
curves which, in turn, tend to the common steady-state asymptote. As the shock-wave
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dynamic

■i—^ I

Fig. 3. Time dependence of <r* at p = 3 for y = 1/5, v = 1/4.

progresses, the difference between the values of a*e immediately behind and ahead of
the wave-front decreases in accordance with (49); it should be kept in mind that this
difference is independent of y.

Figure 4 illustrates the quantitative influence of inertia upon the transient thermal
stresses. Here, the dynamic peak-values of a% on either side of the wave-front, and the
quasi-static values at the wave-front, are plotted as a function of r. The dynamic curves
are based on v = 1/4 and y = 7.3 X 10~9. This choice of the parameters is descriptive
of steel, if a = 1 ft. The current value of y is obtained from (8), (9), by use of the approxi-
mate values ix = 5 X 1010 poundals/ft2, /3 = 484 lbs/ft3, k = 1.28 X 1(T4 ft2/sec. In
this instance c = 1.75 X 104ft/sec. Furthermore, for the preceding choice of a and k,
according to (2), t = 7.8 X 103r.

The curves appropriate to the dynamic <r*e behind the wave-front (w = 0+) and to
the quasi-static a% at the wave-front (w = 0), are indistinguishable from the coordinate
axes for the time-scale underlying the main diagram in Fig. 4. The inset diagram—drawn
to a magnified time-scale—exhibits what might be called a boundary-layer effect with
respect to time, which is characteristic of the behavior of <r% during the initial stage
of the motion. Thus, the dynamic peak of a% ahead of the wave-front is reduced to about
one third of its initial limiting value of —3/2 during the first 4 X 10~12 second of the
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motion. In the same time-interval, the dynamic peak of <r*e behind the wave-front as
well as the quasi-static a% at the front of the wave, decrease to less than five per cent
of their joint initial value of —1.

In conclusion we emphasize that the present results, which presuppose a step-
function dependence upon time of the surface temperature, are bound to require severe
modifications once the fiction of an instantaneous heating of the boundary is abandoned,
even if the rate of heating, though finite, is extremely rapid by physically realistic
standards.15

Acknowledgment. The authors are indebted to Mr. J. J. Kalker who conducted that
portion of the numerical work which was carried out on the I.B.M. 650 electronic
computer.
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