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MATRIX DIFFERENTIAL SYSTEMS WITH A PARAMETER IN THE BOUNDARY
CONDITIONS AND RELATED VIBRATION PROBLEMS*
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In a series of papers by Moshinsky [1, 3] and Adem and Moshinsky [2] the descrip-
tion of some physical processes has been given by a column matrix or vector instead
of a single function, achieving a simplification in the mathematical solution of such
processes and making it possible to solve a variety of problems. In the examples con-
sidered in [2, 3], for example, the above formulation leads to a matrix eigenvalue problem
which is a generalization of the Sturm-Liouville problem and that can be treated along
similar lines.

In this paper, by describing a vibratory system in the aforementioned way, we are
led to a more general eigenvalue problem that contains a parameter both in the differ-
ential equations and in the boundary conditions. This problem can be considered as a
generalization of the corresponding scalar case, examples of which have been considered
recently by Bauer [4] and Morgan [5].

In the first part of this paper, we give examples of vibratory systems that give rise
to this new type of eigenvalue problem.

In the second part of this paper, we formulate and discuss the general matrix differ-
ential system and obtain some properties of the eigenvalues and eigen column matrices.

I. Vibrating string with a concentrated mass at a point. Consider a string with a
concentrated mass at a point which separates two regions of different density and length
of which the string is composed. The string is fixed at the ends. We wish to find the
transverse displacements of the string if it is displaced initially into a position and
released from rest at this position with no external forces acting.

Let the length of the string be Lx + L2 , and M the concentrated mass at a distance
Li from the left end point of the string. We shall designate I and II as the regions to
the left and right of the concentrated mass respectively, and Yx and Y2 as the corre-
sponding displacements. Region I has a density pi , and a length Lx , while II has a
density p2 and a length L2 . The space-independent variable shall be called xt in I and
xt in II; Xi increases from left to right, while x2 increases from right to left, so that at
the end points we have xx — 0, x2 = 0 and at the point with the concentrated mass,
x% ~ L\ , x$ — L% .

Considering that in both regions the equation of a vibrating string applies and
considering boundary and initial conditions we obtain the following differential equations
and boundary conditions:
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02r,. _ 1 d2Y( 0, m
dx2 - C\ dt2 (* - 1,2)' (1)

7,(0, t) = F2(0, t) = 0

Y1(L1 , t) = F2(L2 , t)

(*Zi) . (ZZi) = _K (?YA
\ \ 5X2/xa-L, T \ dt )Xi-Li

F,(x, , 0) = F^Xi); Y2(x2 , 0) = Fa(xa), (3)

(fL - (f)...-•.
where C] = T/pt (i = 1, 2); T is the tension on the string; and F,(x2) are the
initial displacements prescribed at regions I and II respectively.

Applying the change of independent variables

Xi = La'i (i = 1,2),
we have that now the range of x[ is the same as that of x2 and we can therefore put
/*•/ — /»»' — /y»•Oj ~~ a. 2 ~~

Problem (1), (2), (3), (4), becomes:

— ——- —— for 0 < x < 1L] dx2 ~ C2 dt2 fOT 0 < * < *> do

(2')

where

and

Let

2/i(0, t) = y2(0, <) = 0

2/i(l > 0 = 2/2(1, 0
1 fdyA 1 1 /dy2\ _ M (d2yt\
Li \ ax/,.! l2 \ ax/,.1 T \ dt2 )„

y1(x, 0) = /j(x); j/2(x, 0) = /2(x), (3')

(3?/i/a/)(.o = (dy2/dt)0 , (4')

x = x,/L,- , 2/,(x, <) = F,(x< , <)

/,(x) = F,(x,).

j/i(x, i) = j/,-(x) cos co<

then problem (1'), (2') becomes:

1 d2y,
vt-& + W° (i = 1'2)' (5)

®fi(0) = 2/2(0) = 0, (6)
2/i(l) = j/2(l),

(7)/ 1 dt/, 1 dy2\ M , . . _
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The solution of Eq. (5) is

Di{x) = Ai cos (aiLiX/Ci) + Bi sin (ccLiX/Ci),

where A{ , B{ and u are going to be determined from the boundary conditions.
From conditions (6) it follows that A{ = 0.
From conditions (7) we get the frequency equation:

(1/C2) sin (coLj/Ci) cos (wL2/C2) + (1/C,) cos (toLj/Ci) sin (uL2/C2)

— (.Mu/T) sin (uLn/Ci) sin (coL2/C2) = 0.

whose roots are real and form an infinite denumerable set. Let the positive roots of
Eq. (8) be «i , wa . They are the eigenvalues of the problem (5), (6), (7).

To each eigenvalue there corresponds a solution:

(8)

yu(x) = sin (co,X1x/C1)

/ v sin (p3jL\/Ci) . , T .~ v
V2,(x) = • /, t /r^sm (ujL2x/C2)

sin vvcojjl/2/ o 2)

(9)

where we have used the notation Unix), y2i(x) instead of yi(x), y2(x) to distinguish
that it is a solution corresponding to the eigenvalue. yu{x) and y2i(x) can be con-
sidered as the components of a column matrix (vector) which will be denoted by Jf(x)
and called eigen column matrix:

Vi j(x)
y/(«)

Vit (®).
Proceeding as usual, we assume as solution of our problem an infinite series of the

type:
CO

y(x, t) = X B,y,{x) cos Wjt.
1-1

This series is a solution of (1'), (2'), (4') provided it is convergent and admits two
successive term by term differentiations with respect to t and x. Assuming that this
condition is satisfied, there remains, then, to determine the constants Bt , so that (3')
is satisfied:

f(z) = AO)
./2O).

= Vu(x)

V2i{x)]
= HBj^x). (10)

Assuming the validity of expansion (10) the coefficients Bt can easily be determined
and for it we shall establish first the orthogonality relation of the eigen column matrices
corresponding to the problem (5), (6), (7).

Since yk(x) and y„(x) are solutions of (5) corresponding to wk and co„ respectively,
the following relation is satisfied:

Therefore
£ L, ("" ix'" dx' y") S <k '

£ h [»"■iJt ~»•14! - « - * /.' & §»
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From boundary conditions (6) and (7) it follows that

2 r1 T M
H / 73 yih(x)yit>(x) dx + 7=- j/u(l)y,»(l) = 0 (11)
«-i Jo w *

or with matrix notation:

[ j'k(x)B.yv(x) dx + yt(l)Jy„(l) = 0
Jo

J = M/T 0
0 0

where

H fvtf 0
. 0 U/Cl

and y't(x) denotes the transposed of yh(x).
This is an orthogonality condition for the eigen column matrices of problem (5), (6), (7).

Assuming that the series (10) can be integrated term by term after being multiplied
by y'(x)H, we can now, using (11), determine the coefficients B, in (10), which are
given by

f1 {(LjOf^y^ix) + (L2/Cl)f2(x)y2i(x)] dx + (M/T)U(l)yu(l)
B, =   71  (12)

[(WOvUx) + (WCDvUx)] dx + (M/T)v\,(x)
J 0

or more briefly with matrix notation

[ yf(a:)Hf(x) dx + f'(l)Jy,(l)
R - — Bs - -i

/ yJ(a:)Hy,(x) dx + y,'Jy,(l)
J 0

Substituting (9) into (12) we obtain

i[Lx, ■ l2 ,
2 Lc? + SU1 <7, J Let sin2 («,L2/C2) + T_T'

= c\ /„ /l(x) SU1 ~cT dx + cl sin [«J0 sin icT (13>

+ Y /i(l) sin -£7-

and the formal solution to the problem (1), (2), (3), (4), is:

Yi(xj , t)

Y2(x2 , t).

= Z5, sin (w,Xi/Ci)

sin (co.Li/Ci) . , . .
Sin (COj3/2/C/ 27

sin (co<L2/C2)'

cos coi<,

where «.• are the positive roots of Eq. (8) and the 5,'s are given by (13).
II. Solution of other vibrating systems. The above method can be applied to the

case of a string with n concentrated masses Mx , M2 , • • • , Mn which separate n + 1
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regions of different density Pi , p2 , • • • , p» ; and different length Lx , Lt , • • • , Ln . In
this case we describe the system by n + 1 functions F,, F2, • • • , which by a change of
variable is always possible to have in the same domain, for example, 0 < x < 1, t > 0.
We call the n + 1 regions from left to right, I, II, III, • • • and, for example, in the
regions labeled by an odd number let the space variable increase from left to right,
while in those labeled by an even number let it increase from right to left. We are led
to a system of n + 1 differential equations of the type (1') with boundary conditions
similar to conditions (2'), (3'), (4')- In fact, we are led to a matrix differential system
which is a particular case of the one discussed in the next section

Since the solution of the mathematical problem corresponding to a vibrating string
also solves analogous problems of torsional vibrations of shafts of circular section and
longitudinal vibrations of bars, the above method yields exact solutions (without neglect-
ing the mass of the bars, as is usual in Theory of Vibrations) of such systems when
they have several concentrated masses, which separate bars of different elasticity,
section and length

III. General matrix differential system. The problem (5), (6), (7) as well as those that
arise in the examples of Sec. II, are particular cases of the system formed by the general
self-adjoint matrix differential equation [6]

l«-s(pl) + ,5| + (lf + R>"XW* <">

(15)

and boundary conditions of the type

(A + XB)y(O) + C(dj/dx)x.a = oj

(D + XE)y(l) + Fidy/dx)^ = of'
where P, R and W are n X n symmetric matrices, Q n X n antisymmetric matrix; P,
R, W, Q are real functions of x; the unknown y is a column matrix of n components;
X is a scalar parameter; A, B, C, D, E, F, are n X n constant real matrices. We assume
that P, R, W, Q, dP/dx, dQ/dx are continuous and that the determinant of P is different
from zero in 0 < x < 1.

/'Jo

From (15) we obtain

ly'UYi) ~ L'(j.)Y,] dx
(16)

■ [y(P(rfy,/dx) - {dy'Jdx)Py, + y'Qy,]J = (X,- - X.) f y',Wy, dx,

where y, and y,- are two different solutions (eigen column matrices) corresponding to'
the eigenvalues X,- and X,- respectively; and y\ and L'(y,) denote the transposed of y{
and L(jt) respectively (i.e., they are row matrices of n elements).

The problem that we are going to deal with is such that by substituting the boundary
conditions (15) into (16) we obtain a relation of the type:

[y. , y,] = [ y!(x)W(x)y,(x) dx + y;(0)My,(0) + yKl)Ny,(l) = 0, (17)
Jo

where M and N are constant n X n matrices. Relation (17) can be considered as an
orthogonality relation that the eigen column matrices of the problem (14), (15) satisfy.
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We are more familiar with orthogonality relations in which the last two terms of the
left member of Eq. (17) are zero. Such is the case in the self-adjoint problem of the
type (14), (15) but in which the parameter X does not appear in the boundary con-
ditions (i.e., B = E = 0). This problem has been extensively studied by G. D. Birkhoff
and R. E. Langer [7]; and also by Moshinsky and the author in connection with self-
adjointness [6], and examples of it have been given in [2, 3], As far as the present writer
is aware the problem (14), (15) has only been studied in the scalar case (i.e., when
n = 1) and some papers by Bauer and Morgan have appeared recently dealing with
it [4, 5].

Now that we have formulated the mathematical problem (14), (15) the next step
would be to develop a theory dealing with properties of eigenvalues and eigen column
matrices and with the possibility of expanding an arbitrary column matrix in terms
of the eigen column matrices, as is needed for the applications, as, for example, in the
problems mentioned in the above sections.

Proceeding as W F. Bauer does in the scalar case [4], we shall give the following
definitions:

D 1. A column matrix u(x) shall be called F-column matrix if it is real, not identically
zero, of class C1, and satisfies the boundary conditions (15).

D.2. The inner product corresponding to the eigenvalue problem (14), (15) is defined
as

[h, g] B f h'(x)W(x)g(x) dx + h'(0)Mg(0) + h'(l)Ng(l), (18)
Jo

where h(a;) and g(x) are column matrices whose components are bounded integrable
functions.

D.3. The eigenvalue problem (14), (15) is normal if for every F-column matrix
u(x) we have

[u, u] > 0.

The following results can be established:
T.l. A sufficient condition for the problem (14), (15) to be normal is that W be a

non-zero diagonal matrix whose components are non-negative in the fundamental
interval and N and M diagonal matrices whose components are non-negative.

T.2. If W, N and M satisfy the same condition as in T.l., the eigenvalue problem
(14), (15) has only real eigenvalues. The proof of T.2., is analogous to that employed
in the scalar case [4],

T.3. If we define as Rayleigh's quotient R{y) for any F-column matrix y(x)

j? (-it) = [£(y)> y](y) [Wy,y] '

where L(y) stands for the left member of (14), from (14) it follows that R(y<) = X,- ,
where y, is an eigen column matrix corresponding to the eigenvalue X,- .

T.4. If W, N and M satisfy the same conditions as in T.l., and [L(y), y] > 0 for
-every F-column matrix then the eigenvalue problem (14), (15) has only positive eigen-
values. This result follows from T.3.

T.5. Corresponding to each real eigenvalue there is one or at the most, a finite number
hi of linearly independent real eigen column matrices y\a)(x), a — 1, 2, • • • , h{. (< 2n).
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T.6. The eigen column matrices corresponding to different eigenvalues are orthogonal
with respect to the inner product defined by (18). The eigen column matrices corre-
sponding to the same eigenvalue can be normalized (we assume that the norm of all
eigen column matrices is different from zero) and made mutually orthogonal, by the
usual procedure [8] so that our set of eigen column matrices satisfies

[y\a\ y?'] = hi, (19)

where

a = 1, 2, •••,/),- ; 0 = 1, 2, ■ • • , hf ; i, j = 1, 2, • • •
and <5<I0 is equal to 1 for a = /3 and equal to zero for a 7^ &.

T.7. If we assume the validity of an expansion of the type

m = z £ Ala)yl°\x), (20)
n = 1 a = 1

where f(x) is a column matrix whose components are bounded integrable functions of
x [that satisfy certain conditions that ensure the possibility of expansion (20)], and
if the series (20) can be integrated term by term after being multiplied by y„'(x)W(a;),
it is possible, using (19), to obtain the coefficients Ai"' , which are given by

at = [f(x), jln].
The conditions under which the expansion (20) is possible as well as the existence

of an infinite denumerable set of eigenvalues, and some properties of eigenvalues and
eigen column matrices of the problem (14), (15) will be left unsettled.
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