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GENERAL SOLUTION OF REYNOLDS EQUATION FOR A JOURNAL
BEARING OF FINITE WIDTH*

BY

L. N. TAO
Illinois Institute oj Technology

1. Introduction. The governing equation of hydrodynamic lubrication, the Reynolds
equation, was established in 1886 [1]. Since then many works on the solutions of the
equation have been published. For plane slider bearings, where the film thickness of the
lubricating fluid is a linear function of the coordinate variable, solutions for both infinite
and finite widths have been obtained. Michell [2] and Muskat et al. [3] gave their solu-
tions for finite width bearing in terms of Bessel functions. In journal bearings where
the film thickness is not a linear function of the variables, Sommerfeld [4] showed that
for the case of infinitely long bearings the generalized Reynolds equation, a partial
differential equation, is reduced to an ordinary differential equation. The solution of the
problem can be immediately derived by integrations. However, for journal bearings
of finite length, all of these investigators mentioned in their papers that they did not
succeed in obtaining the general solution for the finite bearing problem. Michell even
stated that the exact solution of Reynolds equation is only possible if the viscosity is
constant and the film thickness is a linear function of the variables. Following this line
of argument, the subsequent works on the solutions of finite journal bearings** are
approximations by means of a wide variety of mathematical techniques. The aim of this
paper is to establish an exact and complete solution of the Reynolds equation for finite
journal bearings.

In Sec. 2 of this paper the Reynolds equation, by suitable transformations of variables,
is changed to a comparatively unknown equation, Heun's equation. In Sec. 3 Heun's
equation and its function related to the problems are discussed. The convergency of
the Heun function is also studied. Then in Sec. 4 the pressure distributions, as well as
the eigenvalues and their eigenfunctions, are established. Finally, the load carrying
capacity and the coefficient of friction of the bearing are determine in Sees. 5 and 6
respectively.

2. Governing equation. The governing equation of hydrodynamic lubrication [1] is

d_
dx <21)

where p, h and m are the pressure, film thickness and viscosity of the lubricating fluid
respectively, and U is the relative velocity of bearing surfaces. In journal bearings x
and z are taken along the circumferential and axial directions respectively, and the
film thickness may be written as

h = c(l + cos 0) and ?j = €- , (2.2)

**Received March 24, 1958.
*See bibliography cited in [5] and a recent work [6],
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where c is the radial clearance and t] the attitude, a ratio of eccentricity e to radial
clearance c.

Introducing dimensionless quantities

e = -r, Z = Z- , H = -c = 1 + „ cos 0, P = -$i, (2-3)

with r being the radius of the bearing, Equation (2.1) becomes

d_
dd ,(i+"cos 0)3 fs] + h [(1 +"cos 0)3 % ]= w w' (2A)

The boundary conditions of the problem are

P(-T, Z) = P(T, Z), (2.5)

dP( —7T, Z) dP(7T, Z)
ee ~~ d~e (2.6)

P{6, —L/2) = 0, (2.7)

P{6, L/2) = 0, (2.8)
where L = l/d and I and d are the length and diameter of the bearing. Conditions (2.5)
and (2.6) assure the continuity of the pressure and its first derivative along its circumfer-
ential direction, while the last two conditions, (2.7) and (2.8), state that the pressure
at free ends is atmospheric.

In order to remove the non-homogeneous term in Eq. (2.4), we let

P(0,Z) = t(0,Z)+M, (2.9)
where £(8) satisfies the equation of two dimensional journal bearings of infinite length, i.e.

d [~/i , 6vr dH fn
|_(l + , CO. f) -j-w— (2.10)

and its boundary conditions

£(—tt) = Z(t),
d%(—Tr) _ dtj{ir)

dS dd
The solution of Eq. (2.10) with the given boundary conditions (2.11) is [4]

(2.11)

t(ti\ - Qvrr> (2 + r? cos 6) sin 6 . ,
^ ' Uc\2 + v) (1 + v cos 6)2 ' ( }

= 0 (2.13)

The other function f(0, Z) satisfies

f-g [(i + r, cos er fl] + ̂  [(
and the boundary conditions

rt-x, Z) = f(T, Z), (2.14)

(1 + 57 cos 6)3 ^

df( —it, Z) _ dj(ie, Z)
dd 36 (2.15)
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f(0, - L/2) = -m, (2.16)
t(e, L/2) = -&0). (2.17)

Separation of variables

gives
t(0,Z) = m-MZ) (2.18)

ad 1 + 57 cos 6 ad
and

d2j
dZ's - M = 0. (2.20)

From Sturm-Liouville theory [7], it can be shown that Eq. (2.19) with the given boundary
conditions possesses a sequence of solutions corresponding to a sequence of real, non-
negative eigenvalues X,- .

The solution of Eq. (2.20) is then
^ 0, ypi = Ai cosh (X)U2Z + 5, sinh (X,)1/2Z

X,- = 0, \po = A0Z + B0 .

Furthermore by the substitution of

(2.21)

i — cos e . 2 e /nu =     = sm - (2.22)

Eq. (2.19) becomes

_ l±l) g + [w - (4 + + iil] s
(2.23)

(3.1)

2v
This is known as Heun's equation [8],

3. Heun's equation. Heun's equation

z(z — l)(z — a)y" + [(a + p + 1 )z2 — {a + 0 + 1 — 5 + a(y + 6)}z

+ ay]y' + a/3(z - q)y = 0,

with a, q, a, /3, 7 and 5 being arbitrary constants, is closely related to the algebraic form
of Lame's equation (if 7 = S = J, a + /? = 5). Clearly with a = q= lora — q = 0,
Eq. (3.1) is reduced to the hypergeometric equation.

With regular singularities at 0, 1, a and <*>, the Riemann's P-function of Eq. (3.1) is

0 1 a 00

0 0 0 a zk (3.2)
1—7 1 — 5 (7 + S) — (a + /3) 0

Therefore the solutions of Eq. (3.1) for 7 being non-integer are

V = 1 + Z cnz" (3.3)
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and

y = z1"T[l + £<&"]. (3.4)

The first solution is
00

y = 1 + Yj CnZn = F(a, q; a, 0, y, 5; z), (3.5)
1

where F{a, q; a, 13, y, 8; z) is known as the Heun function with

ayCi = afiq

2a?y(y + l)c2 = (a/3g)2 + {(a + (3 + 1 — 8) + (t + 8)a)apq — ayafi

and

a(n + 1)(t + n)cn+l = [(a + 0 + n — 8)n + an(y + 8 + n — 1)
(3.6)

+ a@q]cn — [(n — l)(a + P + n - 1) + a0]cn^i .

The other solution is

y = z'"T[l + Ecy] = z'-'Fia, q, ;a - y + 1, 0 - y + 1, 2 - y, 8; z) (3.7)

with

91 = {9 + [(a + + 5(a " 1} + (1 ~ 7)]} (a - 7 + \){0 ~ 7 + D'

Now to establish the convergence of the function (3.5) we consider the series (the
Heun function with argument 2=1),

£ Cn (3.8)
» —0

and the recurrence relation

and C° = 1' PlCl = Qo 1 (3.9)

where
P„+iC„+i = QnCn - RJC,J

Qo = a,8q,

Pn = 2 (7 + „ - 1),
11

Qn — ̂ 2 [(« + P + n ~ 8)n + an(y + 5 + n — 1) + a/3q],

Rn = -2 [{n — l)(a + /8 + n — 1) + a/3].

(3.10)

Let

Nn = -^- (3.11)
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and
P = lim P„ , Q — lim Qn , R = lim R„

n—» co n—»oo n—»co

then the recurrence relation (3.9) becomes

N- = a -P" N ' (3"12)Vn n + l-iV n+i

By repeating substitutions, Eq. (3.12) may be written as an infinite continued fraction,

  Rn   -^n + \Rfl 4-1 I   H- %Rn + 2 1 /q -I n\
| Qn | Qn + 1 | Q„ + 2 " " " '

It can be shown [9] that this continued fraction is convergent when the roots (pi , p2)
of the equation

Pp2 - Qp + R = 0 (3.14)
are | pi | ^ | p2 |, or p, = p2 and it is divergent when p, 5^ p2 but | px | = | p2 |. Also in
the convergent case with | pt | < | p2 | or p! = p2 we have

lim N„ —> pi . (3.15)
n—»oo

In the present series P = a, Q = 1 + a, and R = 1, the roots of Eq. (3.14) are 1
and 1 /a. This, in turn, shows that the Heun function (3.5) is convergent for all | z | < | a |
if | a | > 1 or for all | z | < 1 if | a | < 1 or a = 1.

4. Pressure distribution. By comparison of Eqs. (2.23) and (3.1) we get

a = l-—1 , q = l~l , a, P = I [3 ± (9 + 4X)I/2]
2" 2v 2 (4.1)

-I * - I7 2 ' 2

Since a > 1 when 77 < 1, the Heun function of the problem is convergent for all 6. And
a = 1 when 77 = 1, the Heun function (or the hypergeometric function) is divergent.
However, 77 = 1 implies a contact of bearing surfaces. This is no longer a case of hydro-
dynamic lubrication. Hence the complete solution of Eq. (2.13) is

r = 4>oio + £ U, cosh (X;)1/2Z + Bt sinh (X^Z^C.F, + D{HX), (4.2)
t~l

where
p = r(l + 1 + * ■ 3 + (9 + 4Xj)1/2 3 - (9 + 4X,)1/2 1 1 \

' \ 2V ' 2V ' 2 ' 2 ' 2 ' 2 ,U)'
TT »U2I?(l + * - - 4 + (9 + 4X-)1/2 4 - (9 + 4x-),/2 3 1 \
H< ~ U F\2T ' qi ' 2 ' 2 ' 2 ' 2 ' U)'

= A0Z + B0 ,

4>o — Co J (1 + v cos 0) 3 dd + Do

and A( , , C\ and D, are constants.

(4.3)
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Conditions (2.16) and (2.17) indicate that £ is an even function of Z, so

A0 = 0; Bi = 0.

And Eqs. (2.12), (2.16) and (2.17) imply that f is an odd function of 9. Since

. 2 eu = sin -

F{ and //, are, therefore, even and odd functions of 9 respectively. This gives C, = 0.
From conditions (2.16), (2.17), (2.7) and (2.8) we then get

C0 = D0 = 0.

Also conditions (2.14) and (2.15) require

AH.M = o,
C.F.'W = 0.

Since D( ^ 0,

ff.M = 0.

Now the pressure distribution with A{ to be determined is

P{9, Z) = H*(9) + E A< cosh (X,)1/2Z-tf,(X,. ; B), (4.4)
i = 1

where

n*(n\ Kn\ 6vrv(2 + v cos ^sin 6 <i ~\
H (e) - $(*) - jjc2(2 + „*)(i + , cos ef (4-5)

and the eigenvalues X, are the roots of

= 0. (4.6)

Hi (6) are orthogonal with respect to the weight function

w(9) = (1 + v cos df (4.7)

over the interval (— w, tt); that is

J w(9)Hi(6)Hj(9) d9 = 0 for i ^ j (4.8)

hence

f w{9)H*(9)Hi{9) d9
A, =    77 • (4.9)

cosh [(X,)1/2L/2] I w{B)H%9) d9

5. Load carrying capacity. Relating the pressure distribution to the load carrying
capacity W of the bearing, W is resolved into two components along and perpendicular
to the line of centers,
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/L/2 /% ir/ p cos e de dz,
-L/2 J-ir-L/2

™ L/2
(5.1)

W2 /L./ 4 /» IT/ P sin 6 dOdZ.
-L/2 J-TT-L/2 J — it

Due to the fact that P is an odd function of 6, we have

W\ = 0 (5.2)
and

W2 12irvr)Lr
PUY ~ Uc\2 + v2)(l -

" O /I /•!
-2V7I + ZTTWisinh [(Xi)1/2L/2] tf,(X,. ; «) d«. (5.3)

V ) i = 1 \^t/ J 0

This result indicates that the line of centers is perpendicular to the load line. The same
result has been obtained for the infinitely long journal bearing. With A, always negative
in the range 0 < 0 < ir, the last term of Eq. (5.3) is therefore always negative. This
implies that the load capacity of finite length bearing is less than that of infinite length
bearing. This result has also been found experimentally by electric analogy [10] and
theoretically by approximation methods [3, 6],

6. Coefficient of friction. The frictional force acting on a journal bearirg may be
expressed by

F =r2 [ ^ f f" ^   + C-s~- (1+77 cos 6) d6 dZ. (6.1)J-L/2 J-r Lc(l + i[C08fl) 2r ' ' dd] '

By Eq. (5.3) we obtain

" = +1w- (6'2)

The coefficient of friction is defined as the ratio of fractional force to the total load W.
And TF, = 0, we have

. _ F_ _ 2tnUr2L . ctj
' W c( 1 - vY/2W2 + 2r { '
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