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DETERMINATION OF CHARACTERISTIC •VALUES*

BY

MARK LOTKIN
Avco Mfg. Corp., Wilmington, Mass.

A method for computing the characteristic values of arbitrary matrices was recently
proposed by the author in reference [1]. This method utilizes a sequence of unitary
transformations which are designed to triangularize the original matrix, thereby pro-
ducing the desired characteristic values along the diagonal of the triangularized form.
Each of the unitary transformations is constructed in such a way as to reduce the norm
of the upper-triangular part of the matrix. The basic function underlying this con-
struction is a certain cubic polynomial whose coefficients depend upon the elements of
the matrix to be reduced.

In this paper there is presented a refinement of the cubic polynomial, which is shown
to possess properties that make it superior to the previous polynomial, on the basis of
theoretical and practical considerations. Theoretically, the modified approach is seen to
become identical with the Jacobi method for symmetric matrices, in certain cases;
practically, the modification has been found to lead to more rapid convergence, at least
for a considerable number of certain matrices that were subjected to both techniques.

A brief resume of the relevant equations inherent in the procedure seems appropriate
here. Let us assume, then, that the sequence of transformed matrices has reached the
pth stage Av , p — 0, 1, 2, • • • , A0 = A, and that it is consequently desired to construct
Av+1 = T~l AVTP , where the unitary matrix Tv has the "norm-reducing" property,
i.e., if

iP= Z |a (p)
r , s = 1

r<s

denotes the "upper-triangular" norm of Ap, and Mp+1 denotes the corresponding quantity
for Ap+1 , then

Mp+1 - Mp < 0. (1)

Let the element b = \ b | exp i/3, located in the (i, j) the position i < j, of A, be the
"pivot" for the next transformation Tv+1 , and let the elements in the position (i, i),
(j, j), and (j, i) of A v be denoted by a = | a \ exp ia. d, and c, respectively; in general,
let a'®' = | | exp (ia'?')-

It was shown in [1] that, for R ^ 0,

Mv+1 - Mv< H(R, 6) = RF(R, 6) (2)

with

F(R, 8) = CJl< + Cje + CJt + Co (3)
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and

C3 = | c |2,

C2 = —2 | c | [| d | cos (0 + y — 5) — | a | cos (0 + 7 — a)],

C, = | d - a |2 - 2 | b\ | c | cos (20 - 0 + 7) + £ (| a£} |2 + | off |2),
i+l<k<i-l

C0 — 2 | b | [| d | cos (0 + 5 — 13) — \ a | cos (0 + a — /3)]

+ 2 [| ajf | ] a-f | cos (0 + aik — aik)
i+l<k<j-l

— | al? | | a[f | cos (0 + aki — at,)].

Any solution (R, 6) of the system

F(R, 0) = 0 (4)

dF/dd = 0 (5)
then guarantees that Mv+i < Mv . Having determined R, 0, the elements of the trans-
formation matrix T„ are found by means of

r = (R2 + 1)-I/2, sgn r = sgn R, t — r exp id, (6)

and the new elements of Av+1 are determined from the relationships (8) through (15) of
reference [1].

In addition to the relationships (16) between the elements of Ap+t and A „ , stated
in [1], there exist further identities between these elements, of value in the actual per-
formance of numerical calculations; some of these are exhibited below.

A short calculation shows, for example, that

I «i |2 + I fri |2 + I Ci [2 + | di |2 = | a |2 + | b | 2+ | c | 2+ | d \ 2 , (7)

by virtue of r2(l + R2) = 1. For the same reason,

I |2 + I ]2 = I o-ik |2 + | o,jh |2 (8)

I alV |2 + | a™ |2 = | aki |2 + | aki |2 (9)

for 1 < k < n, k ^ i, j.
Further, whenever 0 = 0,

&! — Cj = b — c. (10)

As stated in the introductory paragraph, the determination of R, 0 was previously
based on Eqs. (4) and (5).

Now a possibly larger decrease in the norm M than indicated by (4) and (5) may be
obtained by choosing R such that

AT, - M < min H(R, 0).
-co <72 < co

The values of R at which min II occurs must then satisfy

dH/dR = 4 C3Ra + 3 C2R2 + 2CiR + C0 = 0 (11)

dH/dO = 0. (12)
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If R = Rm satisfies (11), then clearly

M — M1 > R2m(BC3R2m + 2C2Rm + CJ.

Now for fixed 6, H(0, 6) = 0, (dH/dR)0,e = 0, (d2H/dR2)0,e = 2 . Thus min
H < 0 whenever C0 ̂  0. If C0 = 0, but Ci < 0, then still min H < 0. Only if C0 = 0,
C\ — 4C,1C3 < 0, is min II equal to zero. Thus in general (11) may be considered superior
to (4) for the reduction of the super-diagonal norm. If Eq. (11) has, for fixed 6, two nega-
tive minima, then we choose for the transformation z = R exp id that root R for which
min min H is assumed.

The superiority of (11) may be deduced also from the study of certain second order
matrices, which are obviously of basic importance in this problem.

I. Let us consider

A = (13)

with a = d. If A is skew-hermitian, then a = d = 0. It may be assumed that be ^ 0.
Since now a = 5, (11) becomes

4 | c | R(\ c | R2 - | b |) = 0,

so that R = | b/c |1/2, and min H(R, d) = — | b |2.With z = | b/c |l/2 exp 2"1 (0 — y)i,
and r2=|c|/(|&| + |e|), the transformation equations lead to

ai = a + (6c)1/2

di = a — (6c)1/2

b, = 0

Cl = (6/| 6 |)(! c | - | 6 |).

The expressions for aL , d.x are, naturally, the exact roots for the matrix (13), with
a = d. Thus M, - M = - \ b2.

II. Again let us consider matrix A as defined by (13), now subject to the following
conditions:

(i) a = S

(ii) 0 + 7 = 2 a

(hi) 6 = 2"1 (0 — 7).

Then

C3 = | c |2

C2 = -2 | c | (| d | - | a |)

Cj = (| d | - | a |)2 - 2 | be |

Co = 2 | 6 | (| d | - | a |),
whence

S(R) = [| c | R2 - (| d | - | a \)R - | 6 |][2 | c | R - (| d \ - | o |)] (14)
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H(R) = R[\ c | R2 - (| d | - | a |)fl - 2 | b |][| c | R - (| d \ - \ a |)]. (15)
If | c | R2 — (| d | — | a |) R — | b | =0, then H(R) = — | 6 |2. If, however, 2 | c \
R — (| d | — | a |) = 0, then H(R) = \ c \ R2 (| c \ R2 + 2 | b |) > 0. Consequently,
min H(R) = — | b \2 is assumed at the roots of | c \ R2 — (| d | — | a |)i? — | b | = 0.
Therefore, 6, = 0, so that the characteristic values of A appear immediately as , dn .

III. Now let the nth order matrix A be hermitian, i.e., a,,- = a,-; , a,-,- real.
Then it is seen that the cubic polynomial F(R, 6) of (2) becomes

C3 = | b\2

C2 — —2 | b | [| d | cos (0 + 7 — S) — | a \ cos {6 + 7 — a)]

Ci = | d — a |2 — 2 | b |2 cos (26 — /? + 7)

C0 = 2 | b | [| d | cos (6 + S — 13) — | a \ cos {6 + a — #)].
for the choice of 6 = 2"1 {fi — 7) above expressions become

C3 = | b\*
C2 = -2 | b | (d - a)
C, = (d - a)2 - 2 | b |2

C0 = 2 | b | (d — a),
and, consequently,

H(R, 6) = RF(R, 6) = R[\ b \ R2 - (d - a)R - 2 | b |][| b \ R - (d - a)]
S(R, 6) = dH/dR = 2[| b | R2 - (d - a)R - \ b |][2 | b \ R - (d - a)].

Thus again H(R) = — | b \2 for the roots R of the quadratic factor of S(R, 6). This,
naturally, implies again that b, = 0.

IV. The matrix

1 1 0

B = 0 1 1

1 0 1.
(16)

has been mentioned as one which defies direct treatment by Greenstadt's method [2],
as well as by the method of reference [1]. However, it is stated in [3] that by applying a
transformation to B which effects a rotation through 8 = 7r/4, the transformed matrix
becomes tractable by Greenstadt's method, and that in twelve cyclically executed
annihilations of the respective pivot the matrix B becomes triangularized to a sufficient
degree of accuracy.

It will be seen that the same preparatory rotation through 60 = x/4, followed by
two transforms of the type determined by (11), exactly diagonalizes the matrix (16).

Since the transpose BT of B has the lower superdiagonal norm, we subject BT rather
than B to the sequence of unitary transformations. The preliminary rotation is effected
by

cos 0O 0 —sin 60

T = 0 1 0 , (17)

.sin 0O 0 cos 0O_
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leading to

Bl = T~'BtT =
3/2 2~I/2 1/2
2-X/2 1 _2-l/2

L-l/2 2~1/2 1/2 J

Let us choose next the element a^1 = 2~1/2 as the pivot b. Then case II discussed previ-
ously is found to apply. With z = 2~1/2 one obtains

2 0 0 "

0 1/2 — 31/2/2

LO 31/2/2 1/2 J

The superdiagonal norm M(By) = 5/4 has thus been reduced by the amount b2 = 2~l
to M{B2) = 3/4.

Next we take = —31/2/2 as the pivot b. Here case I obtains. Therefore, R = 1,
z —i , and

B2 =

B, =
2 0 0

0 (1/2)(1 + i/31/2) 0

0 0 (1/2)(1 - i/3I/2)J
(18)

so that B has actually been reduced to diagonal form.
The diagonalization of BT has thus been achieved by subjecting it to the unitary

transformation B3 = P~lBTP, with

(2/3)1/2 —3~1/2 0

3~V2 (2/3)1/2 0

0 0 1

1 0 0
0 2-,/2i — 2~1/2

0 2"1/2

2"I/2 o — 2~1/2

P = 0 1 0
_2_1/2 0 2~1/2 _

~3~1/2 -(1/2) - (2-3U2)~li (2-3I/2)-1 + i/2

3-1/2 3 ~1/2i —3-1/2 • (19)

_3~1/2 (1/2) - (2-31/2)-1z (2'31/2)-1 - i/2_

According to a theorem of Toeplitz (see, e.g., [4]) a matrix M can be reduced by
unitary transformations to the diagonal form if and only if the matrix M is normal:
McT M = MM'1, where McT denotes the conjugate transpose of M. Thus the matrix B
is seen to be normal. The interesting question then arises whether a class of normal
matrices of which B is a member can be reduced to diagonal form by the general technique
of this paper. This question can be answered in the affirmative; the results will
be published elsewhere.

V. While the choice of a particular value of d may be appropriate, in special situations,
in general the condition (12) may have to be considered, for optimum results. In the
example discussed here the values of 6 = 0, 71-/6, x/3, • • • 5x/6 were applied to each
pivot, which was always chosen to be the element of largest modulus. For the trans-
formation z = R exp id that pair (R, 6) was selected for which min H(R, 9) is assumed.

The following matrix is taken from [1]:
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A =
1 0 -2

2-1 2

2 1 0
(20)

its characteristic values are — 2, 1 ± 2i. Using the method of [1], eight iterations of A
produced the diagonal terms shown under (33) of reference [1], viz.

-1.97139 - .07432t, .95014 + 2.11992z, 1.02125 - 2.0465fo.
The use of the refinement based on Eq. (11) led to

-1.99489 + .OllOOi, .99161 + 2.00158i, 1.00328 - 2.01258i,

clearly a considerably improved result over the previous one. The super-diagonal norm
at this stage had been reduced from 8.000 to 1.424 X 10~3.

VI. The matrix
"l 1 1 1 1 1

11111 \
2 3 4 5 6 7

C = (21)

11111 1
3 4 5 6 7 8

1 1 1 I 1 1
4 5 6 7 8 9

11111 J_
5 6 7 8 9 10

1 1 1 1 J_ J_
6 7 8 9 10 11.

is one of a sequence of non-symmetric matrices of extremely bad "condition" [5]. Matrix
C is nearly singular; the absolute value of its determinant is (31 05 2236 7232 • 10-5)"1 =
.3220 3799 • 10~16. It is well known—see, e.g., Todd [6]—that certain calculations with
these matrices, such as inversions, determination of characteristic values, etc., suffer
from "numerical instability". For machines with twelve decimals, employing floating
point arithmetic, attempts to invert matrices of even the eighth order have been doomed
to failure.

The characteristic values X„ of C, calculated by means of a determinantal method,
and arranged in order of decreasing magnitude, are listed in Table 1.

TABLE 1.
Characteristic values of C.

n Xn

1 .2132 3763 X 101
2 -.2214 0681 X 10°
3 -.3184 3305 X 10"1
4 -.8983 2330 X 10"3
5 - . 1706 2788 X 10"4
6 - . 1397 4990 X 10"8
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It is seen from this table that Xj • X2 ■ ■ • X0 = .3220 3799 X 10-16 = det C, to eight
significant figures.

The reduction technique described above was programmed for the IBM 704 machine.
Single precision arithmetic, and floating point with eight significant figures was used.
At each step, the super-diagonal element of largest absolute value was taken as the
pivot b = a,j of the next transformation. Some of the results are shown in Table 2.

TABLE 2.
Triangularization of Matrix C

y  M„ a|f> ajf 
0 . 494 X 10" 1.0000 0000 .9090 9090 X 10-'

10 .236 X 10"2 . 2124 5647 X 10l . 1250 4932 X 10"2
20 . 553 X 10"4 .2130 8000 X 101 .2123 4414 X 10~2
30 .296 X 10-5 .2132 2888 X 10' -.6031 1972 X 10~4
40 .385 X 10 6 .2132 3244 X 101 -.7919 3310 X 10"4
50 .616X10"' .2132 3678 X 101 -. 2023 3858 X 10"5
60 . 544 X 10"8 .2132 3763 X 10' 2646 2287 X 10~6
70 .980 X 10"9 .2132 3705 X 10l -.1103 9584 X 10-5
80 .149 X 10-» .2132 3751 X 101 -.1097 4208 X 10"5
90 .239 X 10-'° .2132 3772 X 101 -.1057 6060 X lO"6

100 . 448 X 10-" .2132 3763 X 10' -. 1451 8099 X 10"6
110 . 647 X 10~12 . 2132 3765 X 10' -. 1315 6736 X 10"»
120 .143 X 10"'2 .2132 3766 X 10' -.1652 8475 X 10-®
130 . 245 X 10"'3 .2132 3765 X 10' -. 1634 9713 X 10~6
140 . 581 X 10"'4 .2132 3765 X 10' -.1371 2160 X 10~«
150 . 834 X 10-'s .2132 3765 X 10' -. 1409 3837 X 10"6

In this table p denotes the number of iterations, Mp the super-diagonal norm of A„ ,
a\f\ a,-™1 the diagonal elements in Av of largest and smallest absolute value, respectively.

The diagonal elements at p = 150, arranged in order of decreasing magnitude, are:

.2132 3765 X 101
- .2214 0677 X 10°

-.3184 3361 X 10"'

- .8983 2775 X 10"3

-.1705 5897 X 10"4

-.1409 3837 X 10"6

Thus the dominant characteristic value is determined at this stage to about seven
significant figures, while the smallest one is known to about three. The rate of decrease
of M„ , from .5 X 10° to .8 X 10-15, would seem to indicate a "linear" type of con-
vergence. It is obvious that further improvements of the results will be achieved once
a number of basic routines that are presently in the program have been sharpened. Such
routines are concerned with the conversion of numbers from the decimal to binary
system, the calculation of trigonometric functions, the location of roots of polynomials,
and other operations required in the method.

VII. Among the many other matrices that have been reduced satisfactorily we
mention here- the Hilbert matrices. These are symmetric matrices whose elements are
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a,-,- = (i + j — l)1, i, j = 1, 2, 3, • ■ • . Some results for the eighth order matrix are
exhibited in Table 3.

TABLE 3.
Characteristic values of a Hilbert matrix

V  
0 . 882 X 10° 1.0000 0000 .6666 6667 X 10'1

.4273 0205 X 10"2

.4030 7163 X 10-2

.3309 0313 X 10"4

.1518 9860 X 10-4

.6202 6355 X 10"5

.3315 4293 X lO"6

.7117 3257 X lO"8

.6802 6828 X lO"8

10 .262 X 10"1 .1693 0662 X 10
20 . 388 X 10"3 .1695 9118 X 10
30 .543 X 10"6 .1695 9389 X 10
40 .111 X 10-« .1695 9390 X 10
50 .123 X lO"8 .1695 9391 X 10
60 .211 X lO"11 .1695 9391 X 10
70 . 364 X 10"13 .1695 9391 X 10
75 . 424 X 10"16 .1695 9391 X 10

The intermediate diagonal elements in A75 are:

.2981 2524 X 10°

.2621 2851 X 10"'

.1467 6944 X 10"2

.5437 2030 X 10"4

.1297 1307 X 10"s

.1589 9581 X 10~7

The trace of the matrix, which is theoretically equal to the sum of the characteristic
values, is 2.0218 0042. The sum of the diagonal elements at p = 75, on the other hand,
is found to be 2.0218 006. The well-known Givens method for the characteristic values
of real symmetric matrices results in a corresponding value of 2.0218 002.
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