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—NOTE S—

ON A SPECIAL BOLZA VARIATIONAL PROBLEM, AND THE MINIMIZATION
OF SUPERAERODYNAMIC HYPERSONIC NOSE DRAG*

By H. S. TAN (Therm-Electric Meters Co., Ithaca, N. Y.)

Instead of a definite integral, let the following expression be given:

l
D =Gy, v) + [ Fly, v, %) dz, 1)

where G is a known function of y, and y, , ¥, and y¥; may or may not be specified. It is
desired to find the optimum function y(z) that minimizes expression (1). This is a special
case of the Bolza problem [1].

The variation of (1) is easily obtained as follows:

8 D = D(y*) — D(y)

1
= G,. 8o + G, by, + [F, syl + f [F, — (F,)'] 8y dz @

= (6. = Fdel 3o+ 6o + E)T owi + [ 1F, — ()] ay da.
To insure vanishing of §D, it is clear that:
(i) throughout the interval 0 < z < I, Euler’s variational equation must be satisfied:
¢=(F,) —F, =0 @
(ii) at both ends of the interval, the following end conditions must be met:
8 =0, or ¢o=G, — (F,) =0,
&, =0, or ¥, =G, + (F,), =0.

‘The condition of minimization is then furnished by
(iii) the Legendre second variational inequality:

(4)

F,, >0, 0<z <Ll 5)

Our generalization evidently lies in the inclusion of G term outside the integral,
:and the corresponding broadened end conditions (4). Indeed, if G is constant, or dis-
.appears from (1), then the end conditions simply reduce to the following conventional
form for calculus of variations [2, 3, 4], i.e.

8o =0, or (F,), =0,
A 0y, = O, or (Fv')l = 0.

(6)

* Received June 9, 1958.
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In case
01 1+
GWo ,y) = fo_ F(y,y’, ) dx + fl_ F(y, y’, x) dz,

(1) reduces to following single integral:

D= f P,y %) do @

which is, on the one hand, an immediate extension of the ordinary calculus of variations
to include Stieltjes integral at the ends; and on the other hand, a special case of our
present formulation.

The present generalization of the variational problem has, in fact, arisen as a result
of the search for optimum nose curve that minimizes the superaerodynamic hypersonic
drag of an axially symmetric body. The problem is usually so formulated that the nose
length ! and base radius y; are both given, while the tip radius y, may or may not be
specified, depending on the situation. By using meridianial coordinates, x axial and y
radial, the nose drag has been shown to be given by following integral [5]:

l
D = 2mpV? fo {1+ ey’ + v lyy’ do
- (8

It

prz{y"Z + cl:y?» + 2 fo yy'(1+ y)7” dx:l} )

where ¢ is a constant determined by the ratios of solid surface and gas temperature,
and of body and molecular speed. It is easy to see that this drag formula is indeed of
type (1), with

G=y+ @i/, F=2gy0+y"H"" (9)
and end conditions:
oy, = 0
Yo =0, or Yo =G, — (F,)e = 0.

As already pointed out, an optimum solution must be that of Euler’s variational
equation, which, by putting (9) into (3), takes the following form:

Yy’ = =y + )/ y@2 — y). (11)

Its solution, in parametric form, has been obtained, by simple quadrature and use of
relations 3"’ = y'dy’/dy and y"”" = dy’/dzx, as follows [6]:

y =all + ¢y,

(A{2(1 + yl2)l/2 3 1+ yl2)l/2
3 yl3 yl

On putting (9) into (5), the second variational inequality then requires:

(10

xr =

+3In [(1 + ¢ + y’]} teo. U2

F,, =2—y?>0, ie. y < (2 13y

Differential equation (11) shows there are two branch curves merging at cuspidal



19591 H. S. TAN 313
point 3’ = (2)"?; solution (12) shows that the axis ¥y = 0 can not be reached, and y
grows indefinitely both as y’ approaches zero and infinity. The correct branch of curve
is thus specified by requirement (13) which, together with (12), imposes the following
limitations on the admissible values of y’:

o<y <@, y’<o. (14)

Now the tip condition y,6y, = 0 becomes:

(i) For specified y,: 6y, = 0. In this case, in view of the limitations on the admissible
values of ¢/, it is evident that with prescribed nose length [ and base radius y, , there is a
lower bound for admissible tip radius y, , below which no solution exists. Within its
admissible range, it is easy to see that specification of z, , ¥o , Z: , ¥: , uniquely determines
the four unknowns C, , C, , y; and y; , by the four independent equations from parametric
solution (12).

(ii) For unspecified y, :

Yo =G,, — (F,)o = yoll — %52 + ?/32)(1 + ?/62)—3/2] = 0. (15)

Although it is easy to see that both y, = 0 and y§ = « are solutions of (15), neither of
them can be fulfilled by our solution (12), with finite ! and non-vanishing y, . However,
a plot of ¥, against y; (Fig. 1) shows that the curve crosses axis ¥, = 0 at y;, = 0.7862
< (2)"2 Thus, with unspecified ¥, , ¥} can be determined through condition (15). Actual
construction of the optimum curve then amounts to specifying x, , x, , y; (through
¥o = 0), and y, , from which four unknowns y, , y, , C, , C; , are determined by four
independent equations from parametric solution (12).

It is interesting to note that in this case y, corresponding to y; = 0.7862 is usually
greater than the least admissible value of y, which corresponds to y; = (2)/>. This
implies that with a given finite nose length I, reducing the tip radius beyond y, corre-
sponding to y, = 0.7862 actually has an adverse effect. To see this point, it is best to
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refer to Fig. 1, which shows clearly that both for y.(y;) greater and smaller than
Yo (.7862), we will have .8y, > 0, i.e., 6D > 0.
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NOTE ON THE SOLUTION OF THE NEUTRON DIFFUSION PROBLEM
BY AN IMPLICIT NUMERICAL METHOD*

By GEORGE A. BAKER, JR. (Los Alamos Scientific Laboratory, Los Alamos, New Mezico)

It is of interest that the .implicit, numerical method of Baker and Oliphant [1, 2]
for the solution of time-dependent heat-flow problems in rectangular regions may be
usefully extended to obtain the solution of the time-independent neutron-diffusion
equation

VD@Ve — x()e + S0) =0 ey

for the neutron density ¢. In the original work of [1], to obtain an accurate solution,
even asymptotically, it was necessary to take A¢ small. This choice was necessary be-
cause of the occurrence of a term in a higher order space derivative multiplied by At.
We will herein make a slight modification to remove this defect. Let us rewrite (1) as
(for the two-dimensional case)

2 1 3% 0 1_d'%*
B¢+V‘P+Baxzay2—a at'l‘ﬂ‘ﬁ"‘ﬂaxzayz (2)
x0 _ ) _ S0 , VD-Ve*

+ (D(r) wje* tre = oot T oEy

where
* de _

e=9¢* o= 0, 3)
and

# = Min [x()/D@)]. @

To obtain the solution of (1) via (2) and (3) we must advance the time until the asymp-
totic solution of (2) is obtained. In [1], we described for the special case, D, a constant,
how to guess ¢*, and then use (2) to calculate ¢,,).. by solving the left-hand side and
then how to compute a new guess, ¢**, by means of

*Received September 30, 1958. Work performed under the auspices of the United States Atomic
Energy Commission.



