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RESTRICTIONS IMPOSED UPON THE UNIT STEP RESPONSE
OF LINEAR PHASE SHIFT NETWORKS*

BY

PAUL M. CHIRLIAN
New York University

Summary. Bounds have been placed upon the 10-90% rise time and overshoot,
of the unit step response of phase distortion free networks. Two bounds on the rise time
are given, one, in terms of the area under the amplitude function curve, and the other
in terms of the area under the square of this curve. Two bounds on the overshoot are
given in terms of these areas and the phase slope or its square root.

Best possible bounds on the rise time and overshoot are obtained when the amplitude
function is itself bounded and approaches zero at least as fast as aT", n > 0 in the high
frequency region. These bounds may be evaluated readily from tabulated data.

Introduction. The transient response of a network is often substantially improved
by the introduction of phase equalization. However, it should be determined whether
such phase correction will actually provide sufficient improvement to warrant its use.
Computations of the transient response are often tedious. If certain key quantities such
as the 10-90% rise time and the overshoot, of the unit step response, of the phase cor-
rected network could be readily estimated, then the advisability of phase correction
could be determined. Such readily evaluated bounds are presented here.

Since phase distortion free networks have a linear phase characteristic, it will be
assumed throughout this paper that the transfer function of the network in question
is of the form T(ui)e~,k'" where T(u) > 0 and k is the constant phase slope. Low pass
structures will be considered and for convenience T(ai) will be normalized so that
T(0) = 1. The unit step response will be written as A(t).

The 10-90% rise time of the unit step responses. Bounds on the 10-90% rise
time can be obtained by manipulation of the expression for the unit step response

A(t) = h + ~ [ ^-^sin co(t — k) du. (1)
Z T Jo CO

Utilizing the fact that the unit step response of a linear phase network possesses odd
symmetry about the 50% point, which occurs at t = k, the 10-90% rise time r, can be
obtained by solution of the equation
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T(c) sin [cor,/2] ^
cor,

4 = 2r, r
5 7T Jo

It is assumed here that the 10 and 90% points fall on opposite sides of the 50%
point. If this is not the case, then the response will fall below 10% after t = k. Such a
highly oscillatory response is not suitable for most practical applications and will not
be considered here.

Equation (2) is difficult to evaluate. In fact, the rise time can, in general be more
readily evaluated from a plot of the actual transient response. However, Eq. (2) can be
used to obtain some readily evaluated bounds.

Since

sin x

r' ~ 5

X

4t

< i,

f" T(co) rfco] (3)

Often Jo T(u)du does not exist, which renders inequality (3) useless. Even if the
integral does exist, the lower bound may be unduly small.

A somewhat different approach may be used to obtain a bound that exists in all
physical cases where parasitic capacitance limits the high frequency response.

Apply Schwartz' inequality to Eq. (2).
|iu Mr pw sin (cor,/2)

wrt
dee

but,

Thus,

sin (cor,/2)
cor,

' dw = j--4 r,

>15.- 25 M [T(co)]2rfw| . (4)

In many instances the bound presented by relation (4) will be much stronger than
that stated in relation (3). Of course, there are also conditions where the converse is true.

If some relatively weak conditions, which are obtained in practical situations, are
imposed upon T(co), then a very readily evaluated greatest lower bound on the rise time
may be obtained.

Consider that T(co) < e(wc/o>)n, n > 0 for u > oic. That is T(uc) < t and T(co) falls
off as u~n, for co > coc . (For further discussion of such approximations see [1]).

Then the unit step response can be written in the form

J(| + (5)
Z IV Jo CO

where

| 8 | < —■ (6)nir
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Thus, if | 5 | is sufficiently small, the transient response can be assumed to be unaffected
by frequency components greater than co„ .

If the transfer function is such that frequency components greater than coc can be
neglected, and, in addition, if T(u) is bounded so that T(<a) < M, then the following
procedure leads to a readily evaluated bound.

From Eq. (2)
•»wcrt/2

r(2*/r0^<fe.
Q T J0 X

If cocrt/2 < 7r, then the following bound is obtained

| < - 2)5 7T

or

r, > — Inv. Si[4x/(1OM)]. (7)

Where Inv. [a;] is defined by the following relations if x = [sin z/z] dz = Si(y)
then y = Inv. Si(x).

Note that Inv. &'[4x/(10M)] is single valued since M > 1 and [4tt/(10M)] < Si[2ir]
which is the least minimum of

In the derivation of relation (7) it was assumed that wcr,/2 < x. If for some T(co),
wcrt/2 > 7r, then relation (7) will still be valid, since the result is given in the form of a
lower bound and, thus, larger values of r, are allowed.

It can be shown that values of r, given by the equality sign of relation (7) exist, and
hence, this is the best possible bound. To do this, use the transfer function

T(oi) = lim

1, O) < €

M, e < co < .

0, co > coc

Although such a transfer function cannot be realized, it can be approximated arbi-
trarily closely.

Note that an increase in the value of M will reduce the bound on the rise time.
However, since T(0) = 1 < M, large values of M can result in large overshoots.

The overshoot of the unit step response. The overshoot of the unit step response
will be defined in the usual way

oa = max. A(0 — 1.

If the maximum value of A(t) occurs at time tm then manipulation of Eq. (1) yields

-l + lf'T(rJLi)—d'-2 t Jo \tm — k/ x (8)

In general, this equation cannot be used to obtain an overshoot since tm the time of
its occurrence is not known. However, a bound can be obtained. Since | sin x/x | < 1,
Eq. (8) leads to
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0, < ^ f T(w) du.
1 IT J0

Of course, this equation still contains the unknown time l,„ . The bound attains its
maximum value when tm — k is a maximum. Since the response of a linear phase network
is symmetrical about 50% point, and in a physically realizable case is zero for t < 0,
the maximum value of tm — k is k. Thus,

o. < -5 + - T(co) da. (9)
Z 7T Jo

The Schwartz' inequality provides a second bound which may yield better results
than the above if Jo T(w)dw is unduly large, or does not converge.

This is

"•£-2 + tS
If T(w) is such that | 8 | given by relation (6) is negligible, so that the components

of T(u>) for oj > oj, can be neglected and, in addition, T{co) is bounded so that T{co) < M,
then a bound on the overshoot which requires no integration can be obtained.

Equation (8) leads to

[sin x/x] dx.

To bound this expression, consider a comb like T(a) such that T[x/(tm — k)\ = 0
if sin x < 0 and T[x/(tm — k)] = M if sin x > 0. The largest value of 0S then occurs at
tm — k |max = k. Thus,

0,<-U- - Si(2ir)] +•••}.
z 7r

The final term in this series depends upon the numerical value of wck so that the complete
form of the bound may be stated in the following way.

If nx < o)rk < (n + 1)tt, n = 0, 1,2, 3, • • • and T(co) < M, the following bound on
the overshoot is obtained.

1 M "o»< -± + - Z(-lY+1Si(g*), n = 1,3,5, •••
Z 7T g = l

Os < + f{si(a,ck) + jt (-l)°+,Si(gr)J , n = 2,4, (11)

1 M
Os < — o H Si(uck), n = 0.

Z IT

It can be shown that these are the best possible bounds by using the comb like transfer
function discussed previously.

In order to aid in the computation of these bounds and to provide a means of rapidly
estimating the overshoot the following table is included.
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TABLE I
n

Y. ( —1)!,+1 Si(gir) for odd n
o= 1

n X ( —1)"+1 Si(gw)
0=1

I 1.8519
3 2.1085
5 2.2504
7 2.3484
9 2.4234
II 2.4840
13 2.5350
15 2.5789

It should be noted that if the term | S | defined in relation (6) is not negligible, the
bounds given by relation (10) can still be used if they are increased by | S j.

Conclusion. Two bounds have been placed upon the 10-90% rise time of phase
distortion free networks. These are

. 4 f T(fS)
-Jo

da

and

!*{/„"

The following bounds have been placed upon the overshoot.

^ —2

4 + {£/><»>!'<*"
The shape of the transfer characteristic will determine which of these bounds is the

best and should be used.
If T(w) falls off so that its frequency components can be neglected for co > uc and in

addition, if T(u) < M, then bounds may be obtained which require no integration.
These bounds are the best possible and are for the rise time

r, > — In v. Si \JL]limj
and for the overshoot

1 M "
+ - Z (-l),+1<Stfoir), n = 1, 3, 5, • • •

Z 7T g — 1

I m f n 1
O, < + f |Sifak) + £ , n = 2, 4, 6,

1 M
o, < —- + Si(wck), n = 0,

Z 7T
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where the constant n is determined from the relation

nir < uck < (n + l)x, n = 0, 1, 2, 3, • • • .
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Appendix A. Application of the work of Zemanian to linear phase networks.
Zemanian [2] has imposed certain restrictions on the unit step response of a physically
realizable one port network in terms of the real part of the impedance function R(w).
These conditions, when modified slightly, apply to the amplitude function of linear
phase networks.

Comparison of the expression for the unit step response of a network

, / 2 f " R(co) . ,Ait) = - /  sin cat da>
ir Jo <o

with Eq. (1) indicates the similarity of the roles played by R{co) and T(co). Some examples
of these dual roles will now be given. It has been shown by Zemanian that:

(1) If the unit step response is to be a monotonically increasing function of time,
it is necessary that

R(0) > R(oi) for all co.

(2) If R(u) is a monotonically decreasing function of to which approaches zero as co
approaches infinity, then the overshoot is bounded by

o, < -1 + - Si0) = 0.1790.
7T

These may be written for the case of linear phase networks as
(1) If the unit step response is to be a monotonically increasing function of time,

it is necessary that T(0) > T(a) for all co.
(2) If T(w) is a monotonically decreasing function of w which approaches zero as co

approaches infinity, then the overshoot is bounded by

o, < -J + - Si(r) = 0.0895.
1 7r

In a similar way other restrictions imposed upon the real part of an impedance
function can be carried over to the amplitude function of linear phase networks.
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