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5. Maximum altitude. Consider now the case where motion takes place in a plane.
Let the equations be

x" = g(x', y'), x(0) = 0, z'(0) = Cl , (1)

y" = h(x', y'), ?/(0) = 0, y'{0) = c2 .

Introducing, as before, the function f(cx , c2) equal to the maximum altitude, we see that

/(ci , c2) = (c\ + c2)1/2 A + /[c, + gifii , c2) A, c2 + /i(c, , c2) A] + o (A). (2)

Hence,

(cl + c2)1/2 + , c2) ^ + h(c\ , c2) ~ = 0. (3)

Once again, let us assume that c2 = 0 implies no vertical motion. Then /(c, , 0) = 0 for
c, > 0. It follows that we can again compute the solution by means of a sequence of
functions of one variable.

6. Maximum range. To tackle the problem of maximum range directly requires
the introduction of another state variable, the initial altitude. It can also be broken up
into two problems, corresponding to the ascent to maximum altitude, and the descent.

References

1. R. Bellman, Dynamic programming, Princeton University Press, Princeton, N. J., 1957
2. R. Bellman and S. Dreyfus, An application of dynamic programming to the determination of optimal

satellite trajectories, to appear in J. Brit. Interplanetary Soc.
3. R. Bellman, I. Cherry, and G. M. Wing, A note on the numerical integration of a class of nonlinear

hyperbolic equations, Quart. Appl. Math. 16, 181-183 (1958)
4. T. Cartaino and S. Dreyfus, Application of dynamic programming to the airplane minimum time-to-

climb problem, Aeronaut. Eng. Rev. 16, 74-77 (1957)

ON THE DETERMINATION OF CERTAIN
THERMODYNAMIC AND PHYSICAL QUANTITIES*

By A. GLEYZAL (U. S. Naval Ordnance Laboratory, White Oak, Siker Spring, Maryland)

We consider any physical phenomenon where a quantity 2 is a continuous differ-
entiable function of two independent quantities x and y. Thus:

z = z(x, y).

Hence

dz = F dx + G d y,
where

F = F(x

G = G(x,y) = fy
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Suppose furthermore that the quantities G and y are readily measured directly but F
and x cannot be measured directly except that the family of curves F = const, may be
determined and at least two curves x = const, may be found. Then the physical quantities
F and x themselves may be determined as functions of G and y. We need merely assign
a label F to each curve of the family of curves F = const, in such a manner that the
areas enclosed by the two curves x = const, and two curves F = const, are proportional
to the increment AF of F. Then additional curves x = const, may be constructed and x
evaluated so that the area enclosed by the two curves x = x, , x = Xi + Ax, and two
curves F = Fx and F = + AF is equal to AFAx.

Proof. Given any exact differential

dz — F dx + G dy, (1)

where F and G are functions of x and y, then, if the curves F = const, and x = const,
are plotted in the G, y plane as shown in Fig. 1,
the area A A enclosed by the curves:

F = Fl , F = F, + AF,

X — Xi , x = xx + Ax,

y

Fig. 1.

is equal to AFAx. For, integrating

f dz = f F dx f G dy = 0,
J c J c J c

where C is the cycle which proceeds along curves x = const, or F = const, from xx r
Fi to x, , Fi + AF, to x, + Ax, P\ + AF, to x, + Ax, F, to x, , F, , we find:

f G dy.
Jc

0 = A F Ax +

Therefore:

f G dy = A A = — A F Ax.
J c

These statements may be generalized to three or more variables and are themselves
generalizations of, and render obvious, certain relationships among thermodynamic
variables. Here, in the usual notation, since

dE = T dS — p dV, (2)
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we have

- f p dV = AA = — AS AT, (3)
Jc

where C is a Carnot cycle which proceeds first along an adiabatic, then along an iso-
thermal, then an adiabatic, and then along an isothermal to the starting point. We con-
clude that the family of isothermals T = Tx + nAT and the family of adiabatics S =
Si + nAS, n = 0, ± 1, ±2, ±3, • • • drawn in the p, V plane map out equal areas AA
in this plane. Thus, if for any gas the isothermals p = Pi(V) and the adiabatics p = p„(V)
are determined by experiment, the "labels" S and T for the curves may then be de-
termined for it is merely necessary to label as 0 the isothermal along which water freezes
and as 100 the isothermal along which water boils at atmospheric pressure. The labels
of the curves T = const, are then determined by Eq. (3) uniquely. Any pair of curves
may be labeled S = I and S = 2 along any isothermal. The unit of entropy is related
to the unit of mechanical energy by resorting again to Eq. (3). The labels for the interven-
ing curves S = const, are also uniquely determined by Eq. (3). Entropy and absolute
temperature S and T as thus determined for one gas must be consistent with S and T
determined for any other gas due to the principle of conservation of energy. The extent
to which the areas A A in the p, V plane are equal indicates the extent to which the postu-
lated equation (2) is valid.

Correction to my paper

ON TRANSFER FUNCTIONS AND TRANSIENTS

Quarterly of Applied Mathematics, XVI, 273-294 (1958)
By A. H. ZEMANIAN (New York University)

Expression (38) should be replaced by its (m — n)th positive root and the second
line below this expression should read, "horizontal line whose ordinate is the (m — n)th
positive root of (m — n)!."

The second conclusion of Theorem 8 should be deleted and its proof adjusted such
that zeros on the imaginary axis are counted with the zeros in the left half plane (i.e.
the symbol q should be discarded and the expression n — p — q should be replaced by
n - p).


