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HEAT CONDUCTION FROM A CYLINDRICAL SOURCE
WITH INCREASING RADIUS*

BY

H. R. BAILEY
The Ohio Oil Co., Littleton, Colorado

Introduction. The theory of heat flow due to conduction from a moving heat source
is of interest in a number of applications; for example, welding [8]**, heat exchangers
[2, 3] and progressive freezing of a liquid [2, 3]. In this paper we consider heat conduction
in an infinite homogeneous medium from the surface of a cylinder of finite length whose
radius is increasing with time. This problem arises in connection with secondary oil
recovery by an underground combustion process, e.g., [4; 7], The restriction of the
cylindrical source to a finite length corresponds to considering an oil reservoir of finite
thickness and including vertical heat losses to media bounding the reservoir.

The differential equation describing this problem is written and the Greens function
method is applied to obtain a solution in the form of an integral. A limiting value of
this integral is then obtained for the case of the source moving at a constant velocity
with no vertical losses. The problem is to evaluate a limit of the form lim(_,» j'0 f(t, r)dr
when jit, t) has an asymptotic representation, for {t — t)/t sufficiently large, which
can be integrated explicitly. For the integrand considered in Sec. 2, it is shown that the
integral can be divided into two parts, namely

n t nt /N nt

/ f(t, t) dr = / f(t, t) dr + / /(<, t) dr,
Jo Jo J t/N

where the last integral goes to zero as t —» <» and the integrand in the range [0, t/N]
can be replaced by its asymptotic expression and evaluated in terms of N for <—><».
Finally, the desired limit is obtained by passing to the limit as N —> °°.

In Sec. 3 an explicit evaluation of the integral solution is obtained for the case of
the radius of the cylindrical source increasing at a variable velocity, namely r'F = V/rF .
This result is obtained by showing that the solution in a transformed coordinate system
is independent of time and thus the partial differential equation in the new coordinate
system reduces to an ordinary differential equation which is solved explicitly.

1. A heat conduction problem. The partial differential equation in cylindrical
coordinates for the temperature in a homogeneous conducting medium is given by

d2 T 1 d T , d2 T 2dT 1 w
37" + r Tt = (1)

where r is the radius, t is time, a2 is reciprocal diffusivity, k is the conductivity, $ (z, r, t)
is the source function and T is the temperature which is independent of the angular
position, d. The source is assumed to be at the surface, r = rF{t), of a cylinder with a
fixed axis at r = 0 and height h as shown in figure below.

*Received July 7, 1958.
**Numbers in brackets refer to the References at the end of the paper.
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The intensity of the source is given by L(t) in units of heat per unit of surface area per
unit time. The source function, $>(z, r, t), for this type of source may be expressed in
terms of the Dirac delta function, <5(r — rF), by the equation

$(z, r, t) = L(t)B(z, h/2) 8(r - rP), (2)

where B(z, h/2) = 1 for | z | < h/2, = 0 for | z\ > h/2.
If we assume T(z, r, 0) = 0, then Eq. (1) has a solution of the form [see 1,7],

T(z, r, t) = (4irk) 1 f dt0 f [ [ $(z0 , r0 , t0)Gr0 dr0 dd0 dz0 ,
J 0 Jr o«=0 J 6 o=0 Jz o*" —co

(3)

where $ is given by Eq. (2) and G is the Green's function corresponding to the left side
of Eq. (1). G is given by the formula [see 1, 7],

G = G(z, r, d, t | z0 , r0 , 0O , t0)

= 2~1air~u\t — t0)~3/2 exp {— a[R2 + {z — z0)2]/4(7 — <0)},

where R2 = r2 + r\ — 2/tocos(0 — 60).
After performing the indicated integrations in Eq. (3) with respect to z0 , 60 and r0

and making the substitution t — t0 = t we obtain

T(z,r, t) = (4k) rl , -,r r-a2(r2 + r2F)~\T (a2rrAId" u'exI> L—Tr—

Terf "('/2+ 2» +erf °(V2 .-''I,
L 2Vt 2 Vr J

where L and rF are evaluated at t — t, I0(z) is a modified Bessel function defined in
Sec. 2.1 and erf x = 2ir~1/2 /„ exp (— a)da.

A reasonable assumption in an underground combustion process is that L = qr'F
where q is a constant. Two cases of this problem are of particular interest in underground
combustion, namely: Case I = constant radial velocity, rF = Ut, and Case 11 = frontal
radius given by rF = 2 Vt. The solutions for these two cases may be obtained from the
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above equation; and for no vertical losses, i.e. In —* <», are given by Eqs. (4) and (5)
respectively.

TV, ft = (2UVqU* { ^ - r)r- exp ™ (4)

T(r, t) = (2k)~lqV £ dr r"1 exp | °'[r' +^(t _ (g)

In Sec. 2 a steady state solution of (4) is obtained, that is, the lim,_„ T(r, t), assuming
that s = r — Ut remains finite as t —> <». Thus a steady state solution for r positions
near the source is determined; this has been called quasi-stationary state [see 6]. In
Sec. 3 an explicit evaluation of the solution for Case II is obtained.

2. A steady state solution for the constant velocity case. 2.1. Preliminary Consider-
ations. In this section we prove a lemma, state some known properties of I0(z), and
discuss an explicit evaluation of an integral. These results will be needed in Sec. 2.2.

Lemma. Let /(<) be a real function of the real variable I satisfying the conditions
(a) 0 < /2(N) < lim,_<„ j(t) < /, (N) for all finite N, and

(/3) lim fi(N) = lim f2(N) = P, then lim f(t) = P.
N—*OS N—+CO t—* 00

Proof. By (/8) there exists an N0 such that | fi(N) — P 1 < e and | f2(N) — P \ < e
for all N > N0 ■ Combining this with (a) we have P — e < lim,_„ f(t) < P + e and
by choosing N0 sufficiently large we can make e small and the lemma is proved.

The modified Bessel function, I0(z), is defined by I„(z) = (2x)_1 f20T e'°°"edd. I0{z),
for real z, can be represented for large values of z by its asymptotic series
I„(z) ~ (2tz)~1/2 ez [1 + 0(1 /z)], and thus

lim (27rz)l/2e~'/0(z) = 1. (6)
z—»oo

Since e~'I0(z) is a continuous function of z and lim2^„ e~'I0(z) = 0, then e~'Ia(z) is
bounded for z > z0 for any z0 .

We define a function g(z) by the equation

e~'In(z) = (2«)-,/2[l + g{z)], z * 0. (7)

And if we define f/(0) = — 1, then g(z) is a continuous function of z. Finally from (6)
and (7) we have that lim*_m g(z) = 0.

An explicit evaluation for the integral,

\p(u, v, t) = / x~1/2 exp (—v?/x) exp (—v2x) dx, u ^ 0,
Jo

has been given by W. Horenstein [5]. The result is

\p{u, v, t) = (2i;)~V/2[ — 2 sinh (2 | u | v) + e2lul" erf (vt1/2 + | u \ t~W2)

+ e-2'u" erf (vt1/2 - | u \ f1'2)]. (8)

The result of Horenstein does not include the absolute values signs on the u's and
these must be added to make the formula correct for u < 0, thus we must have \p(u, v, t) —
ip{— u, v, t). In the application of this formula in Sec. 2.2, the case u < 0 corresponds
to positions inside the cylinder, i.e. s < 0. Passing to the limit as t —> c° in (8) we obtain
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lim *(«,», t) = ffV/V2l"l\ (9)
* —»co

2.2. Evaluation of a limit. Equation (4) may be written in the form

T = (2 kYlqU2I, (10)

where

I = f dr(t - t)t-1 exp {-a2[r - U(t - t)]2/4t} exp [-a2rt/(< - T)/2r]
J 0

■IolarUU - r)/2r]
and putting s = r — Ut, U > 0, we obtain

I = [ dr(t — t)t-1 exp [ — a\s + Ut)*/1t] exp [— z(t, t)]/0[z(<, r)], (11)
J 0

where

z{t, r) = (2t)~1o2U(s + Ut)(t - r). (12)

We shall temporarily assume s ^ 0 and in this case the integrand in (11) is bounded
in 0 < r < t, since for r ^ 0 the integrand is a product of continuous functions of r
and the integrand approaches zero as r —* 0.

I may be divided into two parts, I = Ix + Z2, where 11 = f'0/jV f(t, t)<1t and ^ 2 — Vt/N
j{t, t)(It with f(t, t) written for the integrand in (11), where N is chosen > 1. For 0 < t/N
< t < t, we have 0 < (t — r)/r < (/ — t/N)/{t/N) = N — 1, Then it follows from
Eq. (12), with V > 0 and s finite that z(t, r) is bounded below for 0 < t/N < t < t
and N > 1, say z(t, t) > z0 and thus, by Sec. 2.1, that e~'u'T)I0 [z{t, r)] is bounded.
Hence there exists an M such that 0 < e~*ll'T>In [z(t, t)] < M for 0 < t/N <
t < t, N > 1. The left side of the above inequality is true since I0{z) > 1 for all z. Using
the above evaluations we can now evaluate I2 . /2 can be written in the form

I2 = [ dr r-,(< — t) exp ( —o2s2/4t) exp ( — a2sU/2)
J t/N

•exp ( — a2[/2t/4) exp [—z(t, T)]I0[z{t, r)J

and thus

0 < I2 < (N - 1 )M exp (~a2sU/2) f exp (-a2l'2r/4) dr
J t/N

= (JV - 1 )M exp ( —a2s?7/2)( —4)(aC/)~2[exp (-a2U2t/^) - exp (-a2U2t/4N)]

and thus for t —» and for all finite N we have

lim lit, N) = 0. (13)
t-* oo

If we replace e_2U,T) I0[z(t, r)] in 7, by its equivalent given in Eq. (7) we obtain
[.t/N

I\ = dr{t - t)t_1 exp [ —a2(s + Ut)2/4t]{\ + g[z(t, t)]}[2«(«, r)]"1/2
^0

= [a2CMs + W)]"1/2 f'AV dr(« - r)1/2r"1/2 (14)
»/o

•exp [ — a2(s + Ut)2/4t]{1 + r)][,
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where z(t, r) in the last factor of the integrand of the first equation of (14) has been
replaced by its expression in Eq. (12). If we define

h(t, r) = (t- t)1/2t~1/2 exp [ —a2(s + E/t)2/4t], h(i, 0) = 0 and g[z(t, 0)] = 0,

then the integrand of the second equation of (14) can be written as the product of
h(t, t) and 1 + g [z(t, t)], where both factors are continuous functions of r; and h(f, r) > 0
for 0 < r < t/N and for all t > 0. Hence we may apply the first mean value theorem for
integrals to the integral in the second equation of (14) and obtain

rt/ff
A = [a2lV(s + Ut)]~l/2{ 1 + g[z(t, {)]} dr(t - t)1/2t~1/2 exp [~a\s + Ut)2/4t],

Jo

where 0 < £ < t/N. For 0 < r < t/N we have (t)1/2( 1 - 1 /N)W2 < (t - r)1/2 < (<)I/2
and thus

h < t1/2[a2Uir(s + Ut)YU2{\ + ?[3«,?)]}J«,iV)

L > tU2( 1 - 1 /N)1/2[a2Uir(s + Ut)YU2{\ + g[z(t, N),

where

(15)

/»t/N

J(t, N)= dr r",/2 exp [ —a2(s + Ut)2/4t].
Jo

For 0 < £ < t/N, we have (t — {)/€>(< — t/N)/{t/N) = N — 1; then

z(t, |) = 2-la2U(s + Ut)(t - {)/{ > 2~1a2U(s + Ut)(N - 1),

and thus lim z{t, f) = oo and finally we have lim,^„ g[z{t, £)] = limz_„ ^(2) - 0.
If we now pass to the limit as t —> <» in (15) we obtain

(1 - l/jV)1/2(at/rV1/2 lim J(t, N) < lim /, < {aU)~\~U2 lim J(t, N) (16)
t-*co t—* CO t—* 00

and evaluating lim,.,,,, J(t, N), we have
[.t/N

lim J{t, N) = lim / dr t~1/2 exp [ — a2(s + Ut)2/4t]
t—*oo t-*00 J0

= exp (~a2sU/2) [ dr r_1/2 exp (-as2/4r) exp (-a2C72r/4)
Jo

and from Eq. (9) we have

lim J{t, N) = exp (-a2sC7/2)2(a[/)"l(1r)l/2 exp (-a2 | s | U/2). (17)

Combining (13), (16) and (17), we have

(1 - l/N),/22(aU)~2 exp [-a2C7(s + | s |)/2] < lim (/, + I2)
t-* 00

< 2(aU)~2 exp [-a2f/(s + | « |)/2]

and the above inequality is of the form discussed in the lemma of Sec. 2.1 and thus
we may pass to the limit as N —> 00 and obtain

lim I = 2{aU)~2 exp [—a2U{s + | s |)/2]. (18)
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In the above calculations we have assumed s ^ 0; if s = 0, we may replace the
lower limit of the integral in Eq. (11) by e, repeat the calculations and then pass to the
limit as e —> 0; and we obtain (18) for the case s = 0.

If we combine Eqs. (8) and (18) we obtain for t —> m

lim T = 2k~'qU2 lim f (t - r)r_1
t—»oo f—► oo J0

•exp { — a2[r2 + U\t - t)2]/4t\I0[a2rU(t - t)/2t] dr (19)

= qk~la~2 exp [ — a2U(s + | s |)/2].

The above result is the same as the corresponding known result, [see 6], for a plane
source moving with a constant velocity. This would be expected since the cylindrical
source approaches a plane source for large radii.

3. An explicit solution for Case II. Substituting x = r/rF and r = \t in Eq. (5)
gives

r( , ,„n-i f' d\ [~a2V(x2 + 1 - X)~| \a2Vx{\ - X)I/2]T(x, t) = {2k) qv J^ y exP |_ ^ J L X J' ^ ^

Thus T, when written as a function of x, is independent of t. The partial differential
equation, Eq. (1), for the corresponding case may be written in the form

d2T v \ dT o 2 r/, 371 _ , .
a? + \x + a Vx) dx ~2aVt dt ~ °' (21)

where we have made the substitution x — r/rF . The term d2T/dz2 = 0, since, for the
case h —» 00; T is independent of z. The source term is replaced by its equivalent con-
dition, namely

dr
dx

ST
dx

where

dT
dx

= -(fc)-VFL«) = -qV/k, (22)

dT
dx

are the right and left hand derivatives, respectively, at x = 1.
Due to symmetry no temperature gradient exists at r = 0, also T —> 0 as r —> .

The corresponding boundary conditions on T(x, t) are

|| (0,0=0; lim T(x, t) = 0. (23)

Thus Eq. (20) is a solution of Eq. (21) subject to conditions (22) and (23). Since the
solution (20) is independent of t, then d'T/dt = 0 and Eq. (21) reduces to the ordinary
differential equation

d2T . . 2 2\ dT . .a;_ + (i+ara)_ = o. (24)

Equation (24) can be integrated giving the two solutions
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T = constant

dz
= C, [ - exp [~a2Vz2/2].

Jc, z

To satisfy the boundary condition, dT/dx = 0 for x = 0, we must choose the solution
T — constant for 0 < x < 1; thus the boundary condition corresponding to (22) becomes

dT
dx

~qV
k

(25)

and the solution in the range x > 1 is given by

T = — qV(k)~l exp (a2V /2) J' d(z)(z)_1 exp (~a2Vz2/2)

= -(2k)~1qV exp (a2V/2) J5tf(-aW/2), x > 1

where Ci and C2 have been chosen so that (25) will satisfy the boundary conditions at
x = 1 and x —> <*>. Finally, the value of the constant temperature in the range 0 < x < 1
is obtained by requiring that the solution be continuous at x = 1 thus

T = -(2kylqV exp (a2 V/2)Ei( - a2 7/2), 0 < x < 1 (26)

where Ei is the exponential integral, — Ei( — x) = /" e~* z~1dz. Returning to the r
coordinate, by putting r = xrF(t) in the solution (25) and (26), gives the desired explicit
solution for Case II.

Since this solution is unique, we may equate the solution (20) to the solution (25),
(26) and obtain the following interesting evaluation, with a2 7/2 = R,

\—Ei(—R), | x | < 1 (2?^
{—Ei(—Rx2), | £ | > 1.

f' f exp [-«^+1)]./j[2te(1>-X)'] .
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