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FORCED HEAT CONVECTION IN LAMINAR FLOW
THROUGH RECTANGULAR DUCTS*

BY

S. C. R. DENNIS, A. McD. MERCER and G. POOTS
The Queen's University of Belfast

Introduction. In this paper we consider the problem of finding the heat transfer to
the wall of a duct which has a rectangular cross-section and through which a hot viscous
fluid passes in steady established laminar motion. We shall make the usual simplifying
assumptions that the thermal properties of the fluid are independent of temperature,
that liquids are incompressible and that gases obey the perfect gas law. The first is
strictly true only for small heat input and, of course, the assumption of established
motion ignores the hydrodynamical boundary layer in the inlet. The problem is of
engineering interest since, in many applications of gas-flow heat exchangers, flow passages
are used which have small cross-section and a high ratio of surface area to core volume,
so that the Reynolds number is often small enough for laminar flow to exist. Practical
cross-sections can often be approximated by simple geometrical shapes and theoretical
correlations of heat transfer with cross-section are of value in reducing the amount of
practical test data required.

The rectangular cross-section gives rise to an essentially three-dimensional temper-
ature distribution and has therefore received less attention than those involving two-
dimensional distributions, such as the circle and the case of infinite parallel walls. Some
results have been given by Clark and Kays (1953) [1] by considering conditions far
enough from the thermal inlet to assume a fully developed temperature profile, but
this gives only asymptotic results and no information is obtained on the variation of
heat transfer in the thermal entry region. On the other hand experimental data are
given regarding this variation and it is therefore of interest to obtain theoretical results
taking into account the undeveloped temperature profile. This is the object of this
paper although it is hoped that the numerical analysis of the governing partial differential
equation, which occurs in wider fields, will also be of interest.

Governing equations and basic thermal quantities. We consider a duct whose axis
is the f-axis of rectangular coordinates (£, j/, f) and whose cross-section perimeter is,
in general, the curve C(f, t?) = 0. The constant cross-sectional area is A and the length
of the perimeter is S. In customary notation the velocity field is (u, v, w), but for steady
established laminar motion under a constant pressure gradient P/L we have u = v = 0
and w = w(%, 77) where

d2 w efjw _ ,
d $2 + d v2 ~ mL' W

with w = 0 on C. The energy equation governing the temperature T(£, 17, f) of the
fluid is, subject to the stated assumptions,

(d2T , d2T , d2T\ dT
K\dT + T72 + ~d7J = wT~r (2)
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where k is the thermometric conductivity, and second order terms, such as that due to
internal heat generation, are neglected. The origin is at the thermal inlet and we suppose
that the fluid enters f > 0 with constant temperature T0 . We introduce dimensionless
coordinates x = %/d, y = t]/d and z — f/rf Pe where d = 4A/S and Pe is the Peclet
number, equal to the product of the Reynolds and Prandtl numbers, that is, dw0/K.
The Reynolds number dw0p/n is based on the mean velocity w„ , that is, the ratio of
total flow to cross-sectional area. It now appears that the ratio of axial conduction
nd2T/df2 to the axial convection term wdT/d{ is of order (1 /Pe)2, so that axial con-
duction may be neglected for large enough Pe. This can lead to discrepancies in the
special case of low Reynolds number flow of low Prandtl number fluids, such as certain
liquid metals, but for water, air and high Prandtl number oils it is justified. Equations
(1) and (2) then become

d2 PVlw = (3)
H L

and

«)w0 3 z

where

d2 , d2 , „ T — Ty
Vi = v~2 + and 8 — ™ >

d x d y 1 o — 11

Ti (< T0) being a representative temperature associated with the duct wall in the
region f > 0. The boundary condition for Eq. (3) is that w = 0 on the transformed
boundary C'(x, y) = 0 while that for Eq. (4) depends upon the assumptions that are
made. If Tx is taken as the wall temperature, assumed constant, we have 0=1 within
C' when z = 0 and 6 = 0 on C" when z > 0. There is also another boundary condition
in which we interpret 7\ as the temperature of the medium just outside the duct wall,
again assumed constant. It has been shown by Hampton [2] that, when heat losses by
radiation and natural convection take place from a body at temperature T into surround-
ings at temperature T, , the flux of heat II (cal/cm2/sec) is well represented for tempera-
tures from 0 — 400°C. by the empirical formula

H = A(T - T,) + B(T - T,)2. (5)

The constants A and B depend upon the emissivity E of the body, A varying from
1.96 X 10~4 when E = 1 to 1.33 X 10~4 when E = 0 and B varying correspondingly
from 1.71 X 10~6 to 0.25 X 10~6. If we identify T with the temperature of the duct
wall (assumed ideally to be of negligible thickness so that T is the temperature of the
fluid in contact with it) the heat flux to the wall from the fluid is H = — kdT/dv, where
k is the thermal conductivity of the fluid and v is the outward drawn normal from the
duct wall. Substituting in Eq. (5) and introducing dimensionless quantities we obtain

= Ad +B(T0 - T,)e2, (6)
a o v

where v' = v/d. Now 6 < 1, tending to zero for large z, while B is of order 10 2 A so
that for small T0 — T, (which is implied in the basic assumptions) we may neglect the
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second term on the right hand side of Eq. (6). Putting N = Ad/k, the complete boundary
conditions for 9 in this case may therefore be stated as

0=1 within C' when 2 = 0, dd/dv' = — N6 on C' when z > 0. (7)

If N is infinite we get T — rJ\ at the wall, so that this special case gives the constant wall
temperature condition. If N = 0 we have the trivial solution T = T0 . In practice N
must lie somewhere in between these limits.

The solution of Eq. (4) may be written
oo

6 = «»©n(z, y) exp (—Xnz), (n = 1, 2, 3 • • •), (8)
71= 1

where 9„ and X„ are eigenfunctions and eigenvalues of the membrane equation

v>6 + e _ 0 (9)
W0

subject to the boundary condition, deduced from the second of the conditions (7), that
dQ/dv' = — Ar0 on C". The theory of this equation is well known and is dealt with,
for example, by Courant and Hilbert [3], Since w(x, y) is positive within C' the eigen-
values X„ are real and positive and the eigenfunctions form a complete orthogonal set
satisfying the property

IIw9„9„ dx dy = 0, (m n), (10)

where D' is the domain bounded by C'. Each 0„ has arbitrary amplitude which we
choose, for convenience, so that

JJ wOl dx dy = JJ w dx dy. (11)
Putting z = 0 in Eq. (8) we have from first of the conditions (7) that

l = Z a»e» (12)
71=1

so that from Eqs. (10) and (11)

(i„ = JJ w6„ dx dy/JJ w dx dy. (13)
The temperature 6 (x, y, z) is therefore known to any desired accuracy once sufficient
0n have been found. Two further thermal quantities are of interest. Experimental
measurements are made on the basis of a mean mixed temperature of the fluid, that is,
6 (x, y, z) averaged with respect to the local fluid velocity over any section of the duct.
This temperature is a function of z only and its difference between any two sections
gives a measure of the heat transferred across the wall between them. Denoting it by
TM then QM = (TM — 711)/(^o — 7\) and is given by

dM(z) — wd dx dy/ / / w dx dy,
JJd■ JJc ^

= H al exp (—X„z).
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The remaining quantity to be considered is the rate of heat transfer per unit area to
the wall of the duct, defined by means of a heat transfer coefficient. If H is the heat
flux to a given area of the duct wall, the fundamental equation defining such a coefficient,
h, is H = hAT, where AT is a representative temperature difference. We consider two
coefficients, of somewhat different natures, obtained by different choices of AT. First
taking AT = TM — we obtain the local coefficient of heat transfer hL , which measures
the local average rate of heat transfer to the duct wall as a function of longitudinal
distance down the duct. The total heat transferred to the area between the sections at
f and f + d£ is dq = hLSd^{TM — 7\) = hLSd{d„(T0 — T\) and if s is the distance
measured along the perimeter of the boundary curve C in an anti-clockwise direction
we must also have

dq= -Jcdt; [ ~ds= -k(T0 - TO d{ [ ^ ds. (15)
J c d v Jc a v

We equate these two and introduce the appropriate dimensionless heat transfer coefficient
or Nusselt number, defined as hLd/k, so that we obtain for the local Nusselt number

Nu(z) = —d [ ds'/SdM , (16)
Jc O V

where s' = s/d. We now eliminate d in terms of the 9n by Eq. (8) and apply Green's
theorem to Eq. (9), so that

[ ^ds' = [[ wQn dx dy. (17)
J C' u V W0 J JD'

Using Eq. (13) and since //D< w dx dy = A'wn, where A' is the dimensionless area within
C', we finally obtain

Nu{z) = —j- A„(B„ exp (-X„z), (18)
4c/ m n = 1

where = d2n. At large distances down the duct Nu{z) approaches a limiting minimum
value. If Xj is the smallest of the X's we have, as z —» that 4-.dMNn(z) ~ Xjffij exp
(—Xxs) and 6M(z) ~ (Bj exp ( —X,a) so that Nu(co) = . For experimental measure-
ments a mean coefficient is generally more useful than the local coefficient. This is based
on the total heat, q, transferred to the wall between the thermal inlet and the section

Definition of this coefficient again depends upon the choice of AT and the one most
commonly used is the logarithmic mean temperature difference

T = A T max — AT min _ (T0 — T1,) — (TM — TV)
In (A T max) - In (A T min) In (T0 - ^i) - In (TV - T,)

Adopting this definition in the fundamental equation we have q = hinS{ATi„ .Now q
can either be obtained by integrating Eq. (15) from zero to f or, alternatively, it is the
heat given up by the fluid in cooling from T0 to TM , so that q = Aw0pCv (T0 — TM).
Equating these two and introducing dimensionless quantities we have the mean log-
arithmic Nusselt number, hud/k, given by

,WW-i to(i). (io)
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The advantage of basing the mean Nusselt number on the logarithmic mean temperature
difference is that Nu'iz) tends to the same limiting value as the local coefficient Nu(z).
For as z —* °°, dM ~ exp (— X,, z) and hence

+il„(i)}. (20)

The foregoing results are based on fundamental definitions given by Jakob [4] and are
true for a duct of any cross-section.

Basis of the method of solution. We consider the general domain D'. The following
is similar in principle to the method of Galerkin [5]. Let {$„} be the complete set of
eigenfunctions of the equation

H = 0, (21)
with d(j)/dv' = — N<t> on C. Any arbitrary function Q(x, y) which satisfies these boundary
conditions and which possesses continuous partial derivatives up to the second order
can be expanded in an absolutely and uniformly convergent series in the form

0(x,y) = Y,am<t>m{x,y), (22)
m = 0

where

a' = JJm)!L^-ixdv (23)
and

5c(m) = JJ^ dx dy, (24)

so that 8p(iri) = 0 unless m = p. We can make 0 the solution of Eq. (9) so that multiply-
ing this equation by </>,„ and integrating over I)' we have, by Eqs. (21) and (23),

Sm(rn)Amam = X Jj' r(x, y)<t>mQ dx dy, (m = 0, 1, 2, • • •), (25)

where r(x, y) = w(x, y)/w„ . If we substitute for 0 by Eq. (22) then Eq. (25) is reduced
to an infinite set of homogeneous linear algebraic equations

{8p(rri)Am - \bv{m)}av = 0, (m = 0, 1, 2, • • •), (26)
p = 0

where

b„(m) = JJ r<t>m<t>v dx dy. (27)

The matrix associated with Eqs. (26) is symmetrical since bv(m) = bm(p) and the elimi-
nant for a non-trivial solution gives an infinite determinantal equation A(X) = 0 whose
latent roots are the eigenvalues of Eq. (9). Dividing each row of A(X) by its leading
diagonal element, the resulting determinant converges [6] if the off-diagonal sum is
absolutely convergent and X has no value which makes a leading diagonal element
zero. If this condition is satisfied the convergence of I av I an(i, moreover,
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of y^.T.r, Sv(p) kv\ av\ follows. The eigenvectors {a'vn) j corresponding to a given root
X = X„ can then be obtained, theoretically, in terms of any arbitrary coefficient but in
practice the determination of a given eignensolution is a problem in numerical analysis.
One special point concerning the above formulae may be noted. It will be necessary in
the rectangular case to specify solutions of Eq. (21) by number pairs, that is {<!>„,n]
rather than {</>„}, and the expansion (22) is now a sum over all number pairs from
m, n = 0, 1, 2, • • • . Thus bv(m) in Eq. (26) is then written bv,a(m, n) and is associated
with a coefficient aPit in a double sum over number pairs from p, q = 0, 1, 2, • • ■ . The
equations hold for m, n = 0, 1, 2, • • • , and 5p,a(m, n), written for Sjm) in Eq. (24), is
non-zero only if both m = p and n = q.

The rectangular cross-section. In this case the boundary conditions become

= ±iV9 when x = ^ = ±A0 when y = ® , (28)
cf oc toy l

where Z = (1 + a)/2, V = (1 + l/a)/'2 and a is the aspect ratio. Now the functions
Xm(x) = sin (pmx + P,'n), where tan Pi = P„/N, (0 < Pi < jt/2), satisfy the first of
Eqs. (28) if /3m(m = 0, 1, 2, • • •), is a positive root (the negative roots only repeat the
functions) of the equation

tan 131 = 2AW(/32 - N2). (29)

The roots of Eq. (29) form two separate sets which satisfy respectively the equations

and tan §0Z = N (3Q)
N tan |/3Z + /? = 0,

the corresponding functions being respectively symmetrical and anti-symmetrical
about x = 1/2 . The root /3 = 0 of the second equation does not contribute a function
Xm(x) but the root jS = 0 of the first in the case N = 0 contributes a function Xm(x) = 1,
which must be included for completeness. A similar set of functions Yn(y) = sin (7ny +
7»), where tan y'n = yJN, (0 < y'n < t/2), satisfy the second of Eqs. (28) if yn (n =
0, 1, 2, • • •), is a root of Eq. (29) with Z' for Z. Adopting the double suffix notation
defined above, </>„,„ = X„(x) Yn(y) satisfies Eq. (21) with the results

Am,„ = Pi+ yl (31)
and

«...(■»,»).

We can now obtain a formula for b„,a(m, n), given by Eq. (27), in the form

bp, o(^^7 ^0 4 {^1 m—pl , ! n— Q I C| m—pi ,n+ a I Cm + p ,n + a ^m+p, I n— a I } J (33)

where

[ [ r cos {(/3m + Pp)x
Jo Jo

+ (PL + P'p)} COS {(y„ + 7a)y + (7^ + 70} dx dy,
(34)

and a suffix | m — p |, say, involves a change of sign between elements with suffixes
m and p on the right hand side of Eq. (34). Note that this notation is defined only for
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compound suffixes. A term cm,n has no meaning in the general case, although exceptionally
it has in the following limiting cases. Putting N — <*>, the constant wall temperature
case, we have = 0, y'n = 0, = vit/1, yn = nir/l1 and 8m.n(m, n) Am,n = (ir2/4a)
(to2 -f an2). The expansion (22) is now in the form of a double Fourier sine series in
(0 < x < I, 0 < y < I'). The coefficients given by Eq. (34) can now be identified with
members of the set whose general term is

di,f = / / r cos (itx/1) cos (pry/I') dx dy, (i, j = 0,1,2 ■ ■ ■), (35)
Jo Jo

that is, they may be associated with the coefficients of the double Fourier cosine ex-
pansion of r(x, y) in (0 < x < I, 0 < y < V). Equation (33) still holds identically with
d for c. On the other hand, if N = 0 the only difference is that /3^ = y'n = x/2 and we
find that we can write d in place of c in Eq. (33) provided we change the negative signs
in this equation. This case is of no interest in the present problem but may be so in
other applications since the above formulae are true for arbitrary r(x, y). In the present
problem r(x, y) is found from Eq. (3) to be

where

r(x, y) = t it it i 'i + «2i2) 1 sin (itx/1) sin (jiry/l'),
JO i=1 7-1

/0 = (4/ir2) X 2i 2(*2 + «2i2)"

(30)

and, because r(x, y) is symmetrical about both x = 1/2 and y = V/2 , i and j are
restricted to be odd integers only. Substitution into Eq. (34) yields a formula for cm+p,n+a
which is expressed as a double summation with respect to i and j but which can be
summed with respect to one of these variables of summation to give a rapidly convergent
single series. We also find that, because of the symmetry present in r(x, y), cm+p.n+, is
zero under certain circumstances. Let us associate odd integers with the roots of the
first of Eqs. (30) and even integers with the roots of the second. Then it is readily shown
that cm+v n+Q is non-zero only if m + p and n + q are both even integers, and that the
same applies to each of the other three coefficients in Eq. (33). The formula for the
non-zero coefficients is

_ , Tratj tan {Kft. + Pv)l) ~ (ffm + 0y)I tanh (japr) . „
C/n+p ,n+o Cm+p,n + q / j • ( 2*2 2 i 72/n \ o \2) ( 2*2 7/2/ i \21 j \*51 )fzi ]{a j ir + I (/3m + ftj } (7T ] - I (yn + yQ) J

where c^+„,n+<1 = x3 V cos (/3^ + $'v) cos (y'n + y'a)/af0 (Pm + ft,), and j is odd. The other
three coefficients required in Eq. (33) are obtained from Eq. (37) by appropriate changes
of sign. Since, for all values of N, the roots of Eqs. (30) all approach values which are
integral multiples of tt/1, it is clear that the quadruple sum of bv q(rn, n) with respect
to p, q, m, and n converges absolutely so that A(X) converges.

We may now consider the special nature of the eigenfunctions derived from the
solutions of the algebraic equations. Since b„,a(m, n), which is the coefficient of in
the (m, n) th equation, is non-zero only if to + p and n + q are both even it follows at
once that the equations break up into four independent sets. Since also aVxQ is the co-
efficient of X„(x) YJy) in the expansion for 9 there are four corresponding independent
sets of eigenfunctions which exhibit the alternative properties (i) symmetry about both
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x = 1/2 and y — I'/2, (ii) anti-symmetry about x = 1/2 and y = I'/2, (iii) symmetry
about x = 1/2 with anti-symmetry about y = V/2 and (iv) the opposite of the last
case. Of these only (i) concerns us in this problem since by Eq. (13) only these solu-
tions give non-zero coefficients in Eq. (12). The special case a = 1 needs further con-
sideration since here, in addition to the matrix symmetry bv,t(m, n) = bm n(p, q) present
in all cases, we also have b„,q(m, n) = bq,v{n, m). It follows that if an ordered set of
coefficients {ctj, } with a given eigenvalue X = \n satisfies the algebraic equations then
so, with the same eigenvalue, does the set {«„,„} obtained by interchange of aQtV with
aPtQ . That is, if 0'n(x, y) = /.T,., ZT-i o,v,QXT{x)Ya(y) is a solution then a linearly
independent solution is O'Jjj, x) = , 53a-1 aa,vXv(x)Y„(y) and, since the eigen-
values are equal, these solutions may not satisfy the orthogonality property given
by Eq. (10), which would invalidate Eq. (13). On the other hand the sum and difference
of these solutions are both themselves solutions and we can write their contribution to
the right hand side of Eq. (12) as

a»{e»(z, y) + Q'n(y, &)} + a'n{Q'n{x, y) - e'n(y, cc)}.

Multiplying Eq. (12) by w\Q'n(x, y) — Q'„(y, x)! and integrating over D' we find at
once that = 0 and in the remaining term, considered as a single eigenfunction with
eigenvalue X„ , the terms Xv(x) YJ-y), X„(x) Yv(y) occur with equal coefficients. It follows
that in the case a = 1 we can abinitio put ap,a = a„„(p, q = 1,3, 5, •••), in the algebraic
equations and that each eigenfunction derived from this reduced set of equations corre-
sponds to a unique term in the expansion (12) with a„ given as usual by Eq. (13). We
have, of course, assumed that the An of the reduced set of equations are themselves
distinct. It follows also in this case that the expansion (8) consists only of functions
for which Q(x, y) = Q(y, x), which we would expect physically.

It remains only, in the general case, to evaluate <2„ from each computed 9„ . Sub-
stituting in Eq. (13) from Eq. (17) we have

1 f 39,.,®"= -ixuar*
and since

then
00 CO

®" = (\ 2] H s'n P'v sin 7»(/3p2 + Ta2)^", • (39)—I -p= 1 <2 = 1

A more rapidly convergent formula is found by substituting directly for 9„ into Eq.
(13) but it is more complicated except in the special case N = 00, in which it becomes

= jr z z p-vv + . (40)^7 0 p=1 0=1

In these formulae {a<n>„,,,} are the particular set of coefficients which refer to 0„ and
which satisfy Eq. (11). In practice, solutions of the algebraic equations have been com-
puted by arbitrarily putting one coefficient equal to unity. If j/1 ) is such a solution
and we put Al"l = 9l„ a(p"l, then 3l„ is found from Eq. (11). From Eq. (9) we
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have ffo-w02„ dx dy = — (w0/Xn) V3©„ dx dy so that

^ = wi 41 ^ i £• *>•&> q)(& + (41)X„(J + a) p_1

Computational results. For a given value of a the computation from the algebraic
equations of the first few eigensolutions, arranged in ascending order of X, is a standard
problem. We have used relaxation methods in conjunction with Rayleigh's principle.
X„ for a given eigensolution being estimated by the Rayleigh quotient

(*l /% I ' n I n I '

= — / / 0„v?9„ dx dy/ / / rQl dx dy,
Jo Jo Jo Jo

= 11 s)on + i: i: i:
(42)

(n)
P,Q

1 3=1 p = l Q = 1

Since the diagonal elements strongly dominate the matrix, good initial approximations
to the eigenvalues are found by equating each successive diagonal to zero giving estimates
Xm.n = «)(fim + 7»)/&m,»(wi, w) where, for obvious reasons, we temporarily adopt
double-suffix notation for the X's. We obtain an initial estimate of the (m, n)th eigen-
function using this approximation for Xm>n , arbitrarily putting A ̂ ,;n) = 1 and using the
other equations except the (m, w)th to estimate the remaining coefficients in the form

- K.nip, q) »]■

This approximation is computed until the coefficients attain some prescribed order of
smallness acceptable as error. It is then improved by the relaxation process until a final
accepted solution is reached upon which we impose the criteria that no coefficient larger
than the agreed order of smallness be omitted, nor must any omitted coefficient affect,
to the agreed working accuracy, the value of any included coefficient. The eigenfunctions
themselves are of little physical interest but to illustrate the numerical analysis we give
in Table 1, correct to four decimal places, the first two in the case a = 1, N = °o. The
physical results of interest depend on the expansions (14), (18) and (19). The (B's converge
fairly rapidly and we need only the first few terms to describe the physical domain, that
is, z > zQ (say). It is pointless to extend the solution too near to z = 0 for since z = f/ril'e

TABLE 1
= 1, N = •

1.0000 - 0.0369 -0.0022 -0.0004 -0.0001 -0.0001
-0.0369 0.0043 0.0003  -0.0002
-0.0022 0.0003 -0.0003
-0.0004 Qi -0.0011
-o.oooi o oooi o.oooi -0.0021

0.0001 0.0004 0.0001 -0.0068
0.0001 0.0004 - 0.0002 0.0334 -0.1583
0.0001 0.0001 0.0334 -0.2967 1.0000

^.0001 -0.0002 -0.0003 -0.0011 -0.0021 -0.0068 -0.1583 1.0000 0.3711

17
15
13
11
9
7
5
3
1
V

17 15 13 11 9 7 5 3 1 qXa N
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then, for fixed f and a given fluid, this would be equivalent to increasing the Reynolds
number beyond the laminar flow range. In our results we have treated the constant
wall temperature case in considerable detail since this is the case dealt with by Clark
and Kays (loc. cit.). In Table 2 the first three X„ and associated (B„ are given in each of
the cases a = 1, 2/3, 1/2, 1/4, and 1/8. For the more general radiation boundary con-
dition we have considered only the square duct. The first three terms for in the case
N = 2 are

8m = 0.972 exp ( — 4.81z) + 0.023 exp ( — 47.6z) + 0.003 exp ( — 127z)- + • • •

while the first only for the cases N = 10, 20 are respectively

dM = 0.893 exp ( —9.18z) + • • • and dM = 0.860 exp (—10.37z) + • • •

The eigenvalues are well separated for the square duct so that in fact even the first
term describes well the physical domain. Beyond N = 20, Xi [and hence the important
quantity Nu{ °o)] can be calculated to good accuracy from the formula

(XQy _ 0? (A + N2 + 21VY [&,.,( 1, !)]„■.
(XOir- ~ t3 V 0? + N2 ) [&Itl(l, 1)]N ' W

This formula is based on the assumption that the correct value of X! for a given N bears
the same ratio to Xx in the case N = <» as do the corresponding diagonal estimates of
these eigenvalues in the initial approximation given previously since, by Rayleigh's
principle, these latter are always over-estimates. For example when N = 20, Eq. (44)
gives Xx = 10.42 against the correct value X: = 10.37.

Comparison of thermal results. The theory used by Clark and Kays is based on
the assumption, previously used by Seban and Shimazaki [7] for turbulent flow in
cylinders, that far enough from the thermal inlet

_d_
d f

(r-M = o
\Tm - Tj

and this is borne out in our work since, for large enough z, d/dM ~ 0i(x, y)/Ctl , and is;
independent of z. Calculated results for the limiting Nusselt number in the cases a = 1
and 0.5 are given respectively as = 2.89 and 3.39 and these compare well with
our values of 2.98 and 3.39. No theoretical information on the variation of Nusselt.
number in the thermal inlet length is given, but experimental data have been obtained
by the authors for the aspect ratios a = 1 and 0.382. These largely confirm the theoretical

TABLE 2
N = co

a 1.000 0.667 0.500 0.250 0.125
Xi 11.91 12.49 13.57 17.76 22.38
X2 71.07 51.58 41.17 28.17 25.61
Xs 157.9 99.71 94.93 47.82 31.81

®i 0.804 0.802 0.789 0.756 0.737
®2 0.104 0.064 0.071 0.107 0.091
ffi3 0.014 0.043 0.020 0.028 0.034
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Fig. 1. K against aspect ratio for the case of constant wall temperature.

values of Nu(co) and also it is found that for small values of rfPe/f the variation of the
logarithmic mean Nusselt number is linear according to the formula

Nu'(z) , , an
Nu'(c) ~ 1 +K{ f J' ^

This linear law follows theoretically from Eq. (20) which gives the theoretical value
K = (1/Ai) In (l/®i). In the case a = 0.382 the theoretical value K = 0.016 agrees well
with the experimental value 0.017, but this is not so for a = 1 where we find K = 0.018
against the experimental value 0.042. The theoretical curve for K against a is compared
with Clark and Kays tentative linear correlation in Fig. 1. The disagreement is serious,
but we must point out that the experimental curve is determined by only two observed
points, the result for a = 0 being theoretical, so that an error in an observed point could
give a very different curve. On account of the discrepancy for the square duct we have
investigated the radiation boundary condition fully in this case and the results for K
against N~l are given in Fig. 2. Clearly the values of K are always lower than those in
the constant wall temperature case, so no possible explanation is forthcoming from
these results. On the other hand, comparison of experimental and theoretical values of
K for the circular cross-section [8] suggests that experimental values may be considerably
higher. This may lessen the discrepancy in the square case but, for consistency, the
experimental value for a = 0.382 should also be higher. This is possible since Clark and
Kays state that in this case the ratio of duct-length to mean hydraulic depth used in
their apparatus could possibly be higher than the assumed value by as much as 100%;



296 S. C. R. DENNIS, A. McD. MERCER AND G. POOTS [Vol. XVII, No. 3

0-020—

0*003 -
l/N > 0-5

Fig. 2. K against N~l for the square duct.

this would lead to a larger value of K. In the absence of more detailed experimental
results, however, it is impossible to state precisely the cause of the disagreement. Finally,
we should notice that there is some doubt regarding the theoretical value for K near
the limiting case a = 0. We consider only N — °° but the general case is similar. If we
keep the side of the duct parallel to the £-axis fixed and let the other become large then
d2d/dy2 —> 0, w/w0 —> 24 a:(l/2 — x) in Eq. (4). The solution for 6 may now be written
0(x, z) = &mdm(x) exp ( — \£z) where t>" + 24 X'a:(l/2 — x) = 0 with #(0) =
#(1/2) = 0. Now each i3,Jx) can be written as

l±o.si°y). <»-1,8,5...),

that is, it can be considered as a sum of functions Qm,n(x, y) with identical eigenvalues
X^ and these latter functions can, for varying m and n, be identified with the limiting
solutions, here written in double-suffix notation, of our previous algebraic equations.
It is therefore clear that when a = 0 the value of (Bx to be used in Eq. (20) should be
the sum XXi ®i,» , (« = 1, 3, 5, • • •), of the ®'s associated with Qlfn(x, y) and since
it is easily shown that CBX= n~2 ®,,l this sum is x2 (Bi.j/8 . When « ^ 0 and the X's
are all distinct we should use ®i,i which, in double-suffix notation, corresponds to the
smallest X. There is therefore some doubt as to the correct procedure near a = 0 but,
in practice, it can make very little difference to Fig. 1 since K is so small at this end of
the curve.
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