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THE EXACT SOLUTION OF BORDA'S MOUTHPIECE IN
TWO DIMENSIONS*

BY

CHARLES A. HACHEMEISTER
(Polytechnic Institute of Brooklyn)

The solution of the semi-infinite two-dimensional Borda mouthpiece is well known.
Its coefficient of contraction a is 0.5. The solution of the finite mouthpiece seems to
have been avoided, apparently because it involves elliptic integrals.

The finite Borda mouthpiece, Fig. 1, is formed by two walls DC and D'C of length b

projecting into a semi-infinite reservoir which is bounded by the semi-infinite walls
A'B'C' and ABC having a gap of width 2a between them. Inviscid incompressible fluid
flows out of the reservoir through the mouthpiece to form a jet which is bounded by the
free stream lines D'E' and DE. The jet contracts to the width 2aa at E'E far from the
mouthpiece where the speed of the fluid is uniform and of value U. The total efflux from
the reservoir is therefore 2<raU. The speed of the fluid along the free stream lines D'E'
and DE is U. Along the wet side of the mouthpiece and reservoir walls, A'B'C'D' and
ABCD, the surface speed varies. It is zero at the corners C' and C and at the infinite
points A' and A. At two places, B' and B, the surface speed has a maximum. This follows
because B is between A and C where the surface speed is zero.

The values of the coefficient of contraction a and the maximum surface speed with
its location are of interest.

Because the flow is in the general category of "potential flow", the techniques employ-
ing conformal mapping art; applicable. This principle of analysis is not new.

Starting with the lower half of the symmetrical geometry of Fig. 1 redrawn on the
2-plane of Fig. 2a (the mapping figures are grouped together on a later page) define:
the complex potential P = (f> + \pi, where 4> is the potential function, and \p is the stream
function, so that the z-plane velocity Vz = Vx + Vyi = — (dP/dz)* where the * means
conjugate.

*Received August 12, 1958.
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A pair of mapping sequences, one set involving the potential P, the other the potential
derivative dP/dz, is formed to coalesce finally, establishing the desired formulas. This
procedure is indicated by the diagram, Figs. 2a through 2e, indicating the sequential
transformations.

The potential sequence is started by assigning to the potential function 4> and to the
stream function 4> values which are consistent with the existing conditions at specific
places in the 2-plane:

Along the left infinite semi-circle 4> = °° (including points A and G), at the point
D <t> = 0, at points E, F <f> = — °°, along the stream line ABODE \p = caU, along the
stream line FG \p = 0.

These values are then plotted to form the P-plane map of Fig. 2b. The F-plane strip
is then mapped onto the upper half of the w-plane of Fig. 2c by means of the Schwarz-
Christoffel transformation

dP/dw — aaU/irW; P = (aaU/ir) In (w/k,2). (1)

The choice of — 1 and — k'2 as the w-plane locations of C and D respectively is made
in the light of subsequent developments.
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The potential derivative (velocity) sequence of mappings is started by utilizing
certain known facts about the velocity in the z-plane. Rather than mapping the potential
derivative, the reciprocal of the conjugate velocity normalized with respect to the
terminal velocity U of the jet is mapped. This function maps into a simple geometry.
Because

V* = —dP/dz — q exp (— di)

where q is the speed and 6 is the direction of the velocity,

U/V* = (U/q) exp (di).

Along the rigid walls and the stream line of symmetry the direction, 6, is dictated
by these boundaries. Along the free stream line the speed q is constant. The values of
U/V* along the boundaries can then be tabulated:

Along ABC CD DE FG

U/V * = (U/q) exp(7ri/2) (U/q) exp(iri) exp (di) U/q

with > U/q > U/qB > U/q > 1 w > $ > 0 <» > U/q > 1

These values are then plotted to form the £//F*-plane map of Fig. 2d.
The upper half of the (7/F*-plane excluding the unit semi-circle is then mapped

onto the semi-infinite strip in the Q-plane of Fig. 2e by means of the transformation

Q = In (U/V*). (2)
Finally the two mapping sequences are coalesced by mapping the Q-plane strip onto

the upper half of the w-plane of Fig. 2c applying the Schwarz-Christoffel transformation

dQ/dw = N(w + /)/[w*(i(; + k'2)\w + 1)].

Both N and / are evaluated by integrating between G to A and C to C in the Q-plane
and along the corresponding semi-circles in the w-plane. The results are:

N = i f = 1 + lc with k2 = 1 - k'2.

Putting these into the expression for dQ/dw, integrating and making appropriate
adjustment for correspondence of points, there results the Q to w-plane transformation

„ lr [wh + (w + k'2H(w + k'*)* + kw*]
Q - ln k'Xw + 1)* ' (3)

The connection between the w- and z-plane is effected by substituting the potential
derivative for the velocity in Eq. (2) and using the potential derivative from Eq. (1)

n , U . f TTdz\ . / TT dz dw\ , ( irw dz \
Vf = V d/V = \ dwdp) = { (4)

Equating the arguments of the logarithms in Eqs. (3) and (4) establishes, after
rearrangement, the z to w-plane transformation in derivative form
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x [wi + {w + */■)»][(„ + fc'2)1 + kw*]
~Vadz = k'2w(w + 1)} dW- (5)

Equation (5) can be integrated to form the z to w-plane transformation. The result
involves elliptic integrals of modulus k or k' with arguments that are complex, real or
imaginary depending on the locations of the points in the z and w-plane. It is much
easier to integrate Eq. (5) between limits which correspond to specific points, arranging
the integrand in each case so that the resulting elliptic integrals have real arguments.
Three such integrations suffice to establish the relationships among the parameter k,
the mouthpiece length (b/a), the coefficient of contraction <r, and the location of the
maximum surface speed (g/a).

The relation between the mouthpiece length (b/a) and the parameter k is obtained
by integrating Eq. (5) between limits corresponding to the locations of points C and D
in the z- and w-planes

— — f dz = ^ ^ f — ̂ w j _|_ (I + fc)era J.ai dZ k'2 i_, [(to + k'2)(w + 1)]} + U + k)

rk" dw 1 + k rk" dw f~k" dw
J —i [w(w + k'2)(w + l)]1 k'2 «/_! (w + 1)J J —i w(w + 1)*

After performing the indicated integrations the results are arranged to

7Tb k , E{k) - k'2K(k) 1 + k
2Ta-T^k +  »lnl^T <6)

Integrating between limits corresponding to the locations of points D and E establishes
the relation between the coefficient of contraction a and the parameter k. Here the
infinite value of x is avoided by approaching point E in the z-plane:

<»-«> i +k r° (w + 1)* dw k2( 1 + k)lim — — / r, _ 1 + k r   
act J-(b+ai) Z k'2 J-k■, [w(w + k'2)]* k'2

C° dw  1 + k f° dw r° dw
[w(w + k'2)(w + 1)1^ k'1 J-k>, (w + 1)J J-k ^[■w(w + k'2)(w + l)]4 k'2 J_t.a (w + l)4 w(w + 1)J

The real parts are obviously infinite and so are ignored. The imaginary parts yield
the desired formula:

X , n E(k') - k2K(k') X
2a =  V2  + 2 (7)

Eliminating <r from Eqs. (6) and (7) establishes the relationship between (b/a) and
the parameter k

b k + E(k) - k'2K(k) - [(1 - k)/2] In [(1 + k)/( 1 - k)]
a E(k') - k2K(k') + x(l - k)/2 ' 1 J

It is interesting to note that k = 1, k' = 0 corresponds to b/a = °°, the semi-infinite
Borda mouthpiece. Putting these values in Eq. (7) yields a = 1/2, the well known
coefficient for this mouthpiece. Similarly k = 0, k' = 1 corresponds to b/a = 0, the
mouthpiece vanishes and discharge is through the remaining slit in the reservoir wall.
Equation (7) now yields <x = 1/(1 + 2/x), the known value for discharge through a
slit.



1959] EXACT SOLUTION OF BORDA'S MOUTHPIECE 303

The location of the maximum surface speed along the reservoir wall is found by
integrating (5) between limits corresponding to the locations of points B and C

_JL f'ai _ ~(1 + r1  (-w)* dw 
aa J.., d* k'2 [(-k'2 - w){-1 - w)]4 + (1 + fc)*

f_1  dw  (1 + k)i
i-(i+k) [—w( — k'2 - w){ — 1 - «>)]* &'2

r_1 dw . r~' dw
J-a+k) (—1 - w)' 1 J-{l+k) w(— 1 -

and

7T(<7 - q) _ (1 + k)[k2K(k') - E(k')] _ , ,4 1 + fc*
2.7a fc'2 + 2(1 - fc4)' W

Equation (9) with (7) determines the value of g/a in terms of the parameter k and
so the relative location of the maximum surface speed.

The value of the maximum surface speed is found using the potential derivative in
terms of the transformation derivatives of Eqs. (1) and (5) evaluated for w = — (1 + k),
the w-plane location of point B:

y* _ 411 _ dP dw
dz dw dz

Substituting from Eqs. (1) and (5) and making w = — (1 + k)

Fig. 3. Graphical representation of Equations (7), (8), (9), and (10) showing the relations of <r, the
coefficient of contraction; b/a, the mouthpiece length; g/a, the location of the maximum surface speed;
and gmax/f/, the maximum surface speed, to the parameter k. 2a is the width of the mouthpiece. U is

the terminal speed of the jet. The values on any ordinate correspond. See Figures 1 and la.
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v> = Ui> (10)

the velocity maximum at point B.
Eqs. (6), (7), (9) and (10) constitute the desired relationships. The results are shown

graphically in Fig. 3.

For computation purposes it is convenient to introduce into Eqs. (6), (7) and (9)

D E(k) - k'2K(k)B = F

which is tabulated in Tables of junctions by Jahnke and Emde, Dover Publications, 1945.
The following formulas from Handbook of elliptic integrals for Engineers and Physicists,

Byrd and Friedman, Springer. 1945, were used for evaluating the various elliptic integrals:

Equation Formula number
(6) 233.00, 233.01, 110.06, 1110.07
(7) 236.00, 236.01, 110.06, 110.07
(9) 232.06, 321.02, 232.00, 111.03, 122.10
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