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1. Introduction. A large and important class of variational problems has the follow-
ing form. Given a vector equation of the form

^ = g(x, V), x(0) = c, (1)

where x is an iV-dimensional vector, we wish to determine an m-dimensional vector y
so as to minimize a given criterion functional

J(y) = [ h(x, y) dt, (2)
Jo

where h(x, y) is a given scalar function.
The vector y may be subject to constraints of the form

r,(x, y) < 0, i = 1, 2, ■ • • , q. (3)

In problems involving "terminal control," we meet the problem of minimizing a
function only of the final state

I(y) = k[x(T)]. (4)

A problem of this nature occurs when we wish to have the system in some specified
state x0(T) at time T, without caring how the system gets there. This is usually an
idealization, in the sense that a more realistic problem will involve a combination of
a criterion of the type appearing in (2) together with some measure of the value of the
final state.

As has been shown in some recent publications, see [1], where further references
may be found, a variety of problems of this nature arising in economic and engineering
control processes may be solved computationally by combining the theory of dynamic
programming with modern digital computers.

In recent years, problems of less explicit nature have become more frequent. Thus,
for example, what is called the "bang-bang" control problem requires that y be chosen
so that the system tend to a specified equilibrium state as rapidly as possible; see [2],

The upper limit of integration is thus not predetermined, but is rather a function
of the choice of the vector y. In place of a formulation in precise analytic terms of the
type appearing in (2) or (4), we encounter an implicit criterion of the following type:

"When x satisfies a set of conditions Ci , C2 , ••• , Cp for the first time, we want a
given scalar function of x to be as small as possible."
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A particular example of a problem of this nature, equivalent to one we shall discuss
in more detail below, is one in which we require that a preassigned function be a minimum
for the first value of T for which Xi(T) = , a given value.

A number of quite interesting existence and uniqueness questions arise in conjunc-
tion with problem statements of the foregoing kind. These will be discussed at some
time in the future. Here we are interested in describing a technique which can be used
to obtain computational solutions via the functional equation path of dynamic pro-
gramming.

The problem becomes of even more interesting nature if we insert some stochastic
influences into the process. Let the governing equation be

^ = g(x, y, r), x(0) = c, (5)

where r is a random vector. We now wish to minimize an expected deviation, or say
the probability that the deviation exceeds a given critical value.

Once again, let us point out that the rigorous groundwork for these questions remains
to be laid. However, as we shall see below, we have a simple method for postponing
this type of investigation.

As is to be expected, certain simplifications are possible if the underlying equations
are linear, i.e. of the form

xn+1 = Axn + yn + rn , x0 = c, (6)

and the criteria quadratic. We shall discuss these cases in some detail since they are
of some importance in connection with the application of the method of successive
approximations.

Throughout, our aim will be to illustrate the applicability of the functional equation
technique of dynamic programming to the computational solution of questions of this
kind which appear in many ways to be outside the domain of the classical calculus of
variations.

2. Preliminaries. Since, as mentioned above, we are primarily interested in a
computational solution of implicit variational problems of the type described in the
foregoing section, we shall pose our problem in discrete terms. The recurrence relations
we derive will then be ready for use in a digital computer.

In place of the differential relation of (1.4), consider the difference equation

xn+i = g(xn ,yn>rn), x0 = c, n = 0, 1, • • • , N. (1)

One of the advantages of formulating problems in this fashion is that there are now no
conceptual difficulties concerning the meaning of random functions or the existence
of minimizing functions. In return, sometime or other we must show that the limit of
the discrete process exists, and, preferably, yields the continuous process. For a start
in this direction, see [3].

In order to illustrate the method in simple fashion, we shall consider a two-dimen-
sional process,

Xi(n + 1) = Xi(n) - yM) - r^n), ^(O) = ^

x2(n + 1) = g2[xi{n), x2(n), y2(v), r2(w)], z2(0) = c2 .
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The aim of the process is to choose yi(n) and y2(n), subject to constraints of the form

0 < aj < y^n) < a2 , 0 < b, < y2(n) < b2 (3)

so as to minimize the expected value of [x2(m) — x$, where m is the "time" at which
Xi(m) = 0. The rf (n) are independent random variables with given distributions.

The expected value is over the random variables rx and r2 , where rx can depend
upon the choice of yx and y2 , but, in any case is subject to the condition that

V,(n) + r,(n) > a3 > 0. (4)

It follows that Xi(n) is steadily decreasing as n increases.
The recurrence relation in (1) is valid until a?i(n) = 0. Properly, we should write

x^n + 1) = max [0, x^n) — y^n) — r^n)]. (5)

The process ends as soon as x, assumes the value zero.
3. Functional equations. It is clear that the minimum of the expected value of

[x2(n) — xa\~ depends upon cx and c2 and only upon these variables assuming all other
functions and distributions known and fixed. Let us then write

/(ci , c2) = min exp [x2(n) — x0]2. (1)
Vi r

We have

1(0, c2) = (c2 - x0)2, (2)

and the principle of optimality, see [1], yields the functional equation

/(c, , c2) = min [exp /(c, - yx - rx , gr(cx , c2 , y2 , r2)]. (3)
Vi ,1/a r i , r a

There is no difficulty in treating the case in which the distribution of random effects
depends upon the decisions that are made.

4. Probability of deviation. In place of mean-square deviation, let us consider the
problem of determining yx and y2 so as to minimize the probability that \ x2 — x0\ > d.

As above, let

f(ci , c2) = minprob [| x2 — x0 | > d]. (1)
Vi

Then

/(0, c2) = 1, I c2 - x0 | > d, ^

= 0, | c2 — x0 | < d.

while /(ci , c2) satisfies the same functional equation as in (3.3).
5. Discussion of computational solution. In order to determine the function f(cu c2)

using a digital computer, we employ a discrete grid in (ci , c2)-space. Let C! assume
only the sequence of values 0, 5, 25, • • • , and c2 a sequence of values 0, A, 2A, • • • .
Since Ci is monotonically decreasing as the process continues, we can use it as a "time"
variable. Write

f(k5, c2) = fk(c2). (1)

Then (3.3) may be written
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fk(c2) = min [exp fp[g(k8, c2 , y2 , r2)]], (2)
I/1.I/2 rltr2

where p is determined by the condition

V = [(ci - Vi - rO/5], (3)
the greatest integer contained in (cj — yi — rO/5.

Since ^(/c6, c2 , y2 , r2) in general will not be an integral multiple of A, we can either
take as its value the nearest integer multiple of A, as we did in (3), or we can use inter-
polation, if more accurate results are desired.

The value of /0(c2) is determined by the relation

/o(c2) = (c2 - X0f. (4)

Consequently (2) furnishes a recurrence relation which enables us to compute the
function fk (c2) in terms of /„(e2) for n = 0, 1, • • • , k — 1. We thus have a feasible compu-
tational scheme.

6. Deterministic process. Returning to a purely deterministic process, as specified
by (1.1), we may wish to determine y so that x is in some desired state at some sub-
sequent time. One way of attacking this problem is to treat the problem of minimizing
[x2(T) — x0]2, where T is the first time at which xJT) has its desired value. The functional
equations are as above, without the averaging over the random behavipr.

7. Linear equations and quadratic criteria. In general, the application of a straight-
forward functional equation approach is limited by dimensionality difficulties in the
sense that functions of three or more variables cannot be readily stored in a fast memory.
Consequently, the techniques described above must be aided and abetted by successive
approximations of various types, a subject which has been discussed elsewhere. If,
however, the guiding equations are linear, and the criteria function quadratic, then the
sequence of functions {/„ (c)} will consist of a sequence of quadratic functions in c. These
functions are determined once the coefficients are determined. As we shall see, reasonably
simple recurrence relations exist connecting the coefficients of /„(c) with those of /„_i(c).

Consider, to begin with, the problem of choosing the yt so as to minimize the ex-
pected mean-square deviation

Jr(y) = exp (x(T) - a, x(T) - a) + (Vk , Byk) •
r L A=0 J

(1)

Here T assumes the values 0, 1, 2, • • • , B is a positive definite matrix, a is a specified
state vector, x and y are related by means of the linear relations

xn+1 = Axn + yn + rn , x0 = c, (2)

where {rt-} is a set of independent, random vectors with identical distributions.
The process is assumed to proceed in the following fashion. We observe c, the initial

state, and on this basis and the foregoing information, choose y0 , the initial control
vector. Then a random effect r0 occurs, yielding by way of (2) a new state vector
Ac + y0 + r0 . The process then continues in this way, stage-by-stage, a "feedback
control" process.

Although this problem can be, and has been, treated by straightforward variational
techniques, we shall treat it by functional equation methods. There is some merit in
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doing this even in this case, and in addition we shall prepare the way for the following
section devoted to a process of random duration.

Define the new sequence of functions {/r(c)} by means of the relation

jT(c) = min J T(y). (3)
ivi

Then

/0(e) - (c - a, c - a), (4)

and the principle of optimality yields the recurrence relation

/n(c) = min exp [{y0 , By0) + /„_i{Ac + y0 + r0)], (5)
I/O To

for n = 1, 2, • • • .
Let us now show inductively that each /„(c) may be written in the form

/»(c) = (c, Mnc) +2(bn ,c) + un . (6)

The result is obviously so for n = 0.
Substituting in (5), we have

/.(c) = min exp [(y0 , By0) + [Ac + y0 + r0 , M„^(Ac + y0 + r0)]
(7)

+ 2(6„_! , Ac + y0 + r0) +

Taking expected values and using the result that

min [{y, Cy) + 2(gr, y)] = -{g, C'g), (8)
V

whenever C is positive definite, we see that jjc) has the form stated in (6). Carrying
through the calculations, we obtain recurrence relations connecting M„ , bn and d„ with
M„_i , 6„_! and dn.

8. Linear process of random duration. Consider now a system specified by the
equations

^n + 1 7*1 n f U0 Co j

xn+1 = Axn + yn + rn , x0 = c,

where un and rln are scalars, x„ , y„ and r„ vectors. The process ends whenever un becomes
zero or negative.

The quantity r,„ is a uniformly positive random variable, so that the process is
always finite. The control vectors yn are to be chosen so as to minimize the expected
value of

m

J(y) = [x{m) - a, x(m) - a] + £ (.Vt , Byk), (2)
k = 0

where m is itself a random variable determined by the condition that it is the first integer
for which um is negative or zero.

Write

/(c0 , c) = min exp J{y). (3)
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Then

/(0, c) = (c - a, c - a), (4)

and

/(c0 , c) = min exp f(c0 - r10 , Ac + y0 + r0). (5)
l/o r0

Assume, as previously, that c0 can assume only a discrete set of values with a similar
condition on r10 . Let, suitably normalized, c0 take the values 0, 1, , and r10 only
the range of values d1 , rfj + 1, • • • , d2 . Then, writing

1(k, c) = fk(c), k = 0,1,2, (6)
we may write (5) in the form

fn(c) = min exp j p,/„_,(Ac + y0 + r0)| , (7)
l/o r0 \i=d i J

where

Pi = the probability that r10 = i. (8)

The function fjc) is identically zero for fc < 0.
Once again, it is easy to see that each element of the sequence {fk(c)} is a quadratic

function of c, of the form

/*(c) = (c, Mkc) + 2(6* ,c)+uk. (9)

The recurrence relations connecting Mk , bk , uk with Mk-X , 64_, , m*_i can be obtained
from (7) in the way indicated above.
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