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HELICAL FLUID FLOWS*
Br ROBERT H. WASSERMAN (Michigan State University)

Introduction. Potential helical flows have been completely described by G. Hamel
[1], Nemenyi and Prim, and N. Coburn have obtained some Beltrami helical flows
[2, 3]. A simple description will be given here of all steady incompressible helical flows
and all steady compressible helical flows with entropy constant along stream lines.

The equations of helical flow. The class of compressible flows to be considered
here are those governed by the following differential equations in which v* is the velocity,
p is the pressure, p is the density, S is the entropy, and t* is the unit tangent vector
along the stream lines;

V • pv* = 0 (continuity equation) (1)

(pv*-X7)v* = — Vp (equation of motion) (2)

P = p(P> &) (equation of state) (3)

t* ■ V$ = 0 (entropy is constant along stream lines) (4)

For incompressible flows we must satisfy Eqs. (1) and (2) and the special case p =
constant of Eq. (3).

Now we assume that the flows are helical; i.e., the stream lines of the flow are parallel
helices on coaxial circular cylinders. Such flows have the property V • t* = 0. This may
be seen immediately if we introduce cylindrical coordinates r, 6, z and decompose t*
according to

t* = sin /36* + cos I3z*.

Note that the angle /3 of the helices is in general a function of r.
With the condition V ■ t* = 0 the continuity equation reduces to

t*- V In pq = 0, (5)

where q is the magnitude of the velocity. Also, from Eqs. (3) and (4)

t*-VP - ^ t*-Vp = 0. (6)
op

Finally, we write Eq. (2) in intrinsic form [4]:

t*-Vp = -pt*-V~, (7)
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n*-Vp = — p<f k, (8)
b*-Vp = 0, (9)

where n* is the unit principal normal vector of the stream lines, b* is the unit binormal
vector of the stream lines, and k is the curvature of the stream lines. Then Eqs. (6),
(7), and (8) give us the result that either

(a) t*-~Vq = <*-Vp = t*-Vp - 0
or

(b) ? and V = B(S) - ^ ,dp p

where the functions A (S) and B(S) are restricted only by the condition A (S) > 0.
Clearly, the alternative (6), in which the equation of state includes that used by
Chaplygin, and Karman and Tsien, only occurs in the compressible case.

The fact that the helices are geodesies on the cylinders r = const, means that n*
is normal to these cylinders. With this, and using Euler's equation for the normal curva-
ture of a curve to evaluate k, Eq. (8) becomes

f = «■ (10)dr r

The two classes of helical flows. In case (a) Eq. (10) reduces to

dp 2 sin2 p
dr ~ pq r

If in this equation it is understood that p and q are constant along stream lines (i.e.,
condition (a) holds), then it embodies all the conditions for helical flows in case (a).
That is, there is a helical flow corresponding to any set of functions p, p, q, 13 satisfying
this equation.

In case (b) if we introduce the coordinates

a = z + dr tan /3,

ip = z — dr cot /3,
r = r,

then Eq. (10) may be written

r ~ + (a — sin /3 cos 0 ~ (r tan /3) ̂  = (B — p) sin2 (3.dr ar da

If in this equation it is understood that p is only a function of r and a, and B is only
a function of r and \p then any solution gives a helical flow. As an example of a family
of solutions we have those in which

B = const.

r tan /3 = X = const.

(X2 + r2)1/2
p = B   b (a),

where F is an arbitrary positive function of a.
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Some general properties of flows of case (a). In case (a) which applies to all fluids
except those having the special form of the equation of state of case (b) our basic equa-
tion is very simple and we can readily obtain some general properties of helical flows
from it.

Thus we see that
I. jo is a non-decreasing function of r, and it is easy to construct examples for which

it is either bounded or unbounded.
II. p, q, and /3 may, in general, either increase or decrease with r. Moreover, p and q

may vary from stream line to stream line on a cylinder as long as pq2 is constant on
cylinders.

III. In certain important special cases the variation of p, q, and /3 is restricted. Thus,
for example, in the incompressible case if the Bernoulli function is constant then q must
decrease with r. In the compressible case, if the entropy and the stagnation enthalpy
are constant, then q must decrease with r.

IV. For a polytropic gas our basic equation can be written quite simply in terms of
the Mach number. We find that the Mach number may in general either increase or
decrease with r. However, if the entropy and the stagnation enthalpy are constant then
the Mach number must decrease with r.

V. With respect to the vorticity we note in particular
(i) in contrast to the other quantities of the flow [in case (a)] the vorticity can

vary along the stream lines.
(ii) when the vorticity vector is normal to the stream lines the only possible stream

line pattern is given by cot fi/r = const, which is that of the simplest helical
flow; that obtained by normal superposition of a potential vortex and a uniform
rectilinear flow.
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