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WAVE PROPAGATION IN A COAXIAL SYSTEM*

BY
V. M. PAPADOPOULOS

Brown University

Abstract. A solution is obtained for the problem of the propagation of electro-
magnetic waves in a semi-infinite flanged coaxial line with an infinite center conductor,
in terms of an infinite set of coefficients which are determined by an infinite set of linear
equations. The solution is discussed, in detail, in limiting cases which illustrate properties
both of a thin vertical antenna on a plane perfectly conducting earth, and of a thick
antenna fed by a low impedance line. Numerical results are given in these cases. The
possibility of a solution for any excitation frequency is also discussed.

Introduction. The use of an antenna for the purpose of radiating electromagnetic
energy must involve the generation of this energy and its passage to the antenna from
the generator along a transmission line. There is, however, very little theoretical work
published in which an antenna is considered with its means of excitation. It might
appear to be an advantage to examine the radiating system in isolation, and then to
regard it as an impedance lumped at the end of a transmission line: the magnitude of
such an impedance depends, however, on the transmission line parameters. It is therefore
of interest to find whether there is any range of parameters for which the line and the
antenna are substantially independent. The work done on this subject by King and others
[3] implies that as we reduce the spacing of the transmission line to zero we may ex-
trapolate from a series of experimental measurements of physical quantities to the limiting
case of zero spacing; this value may be identified with theoretical results obtained by
assuming, in the isolated radiating system, a delta-function excitation (sometimes
called a ‘‘slice” generator) at the driving point of the antenna. This statement needs
qualification, since the question of the existence of the physical quantity in the limit of
zero spacing was not considered by King. We find that this limit does not indeed exist.
Accordingly, in this paper we are concerned with an idealization of the cylindrical
antenna problem in which the complete transmission circuit may be examined math-
ematically. As an approach to the problem of the antenna of finite length, we shall
consider a semi-infinite flanged coaxial line with its center conductor extended to an
infinite length. A signal set up at one end of the line is partly reflected at the open end
and partly radiated into the half-space outside the line. Since we are interested in
antennae, we may describe the radiating system as an infinite vertical antenna of circular
cross-section, standing on a horizontal, perfectly conducting ground of infinite extent,
with the exciting signal fed in at the bottom.

We shall further simplify the system by considering the case in which the field is
radially symmetric about the axis of the cylinder, with no magnetic field component
parallel to this axis. The field components are related by Maxwell’s equations; in this
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problem all the non-zero field components may be written down in terms of the transverse
component of the magnetic field tangential to the surface of the cyclinder, and this
component satisfies the scalar wave equation. The normal derivatives of the magnetic
field vanish on all the perfectly conducing surfaces. The field components in the half-
space are related to the normal derivative of the magnetic field in the terminal plane of
the coaxial line: this relationship may be found by a method in which cosine transforms
are used. Since the field within the line may be expressed in terms of an infinite set of
discrete modes (Marcuvitz [4]), it is possible by matching orthogonal components across
the gap at the open end of the line to set up an infinite set of linear equations involving
an infinite set of unknown coefficients. Each coefficient is related simply to the amplitude
of the corresponding mode in the line; in turn, the set of coefficients determines all the
field components completely and uniquely. To simplify the analysis, the free-space
propagation constant is taken to have a small negative imaginary part which is later
taken to be zero. The resulting solution is shown to satisfy the conditions of the problem.

The solution of the infinite set of equations is simplified when the spacing of the
coaxial line is small compared to the wavelength of the exciting signal. This simplifying
condition is valid either when the outer diameter of the line is a small fraction of the
wavelength or when the spacing between the conductors in the line is a small fraction
of the line diameter. With this simplification, we find that the field within the line is
very nearly that in an open-circuited line, and this approximate field leads us to a good
value both for the admittance of the radiating system and for the energy density at
large distances from the antenna. The effect of the simplification is to give us results
not only for the thick cylindrical antenna with a small line spacing but also for the thin
antenna with a physically plausible method of excitation.

It should be emphasized that the results are appropriate to an idealized antenna of
infinite length. The energy distribution may not be related to that of a finite antenna.
On the other hand, the admittance of the infinite antenna is the limiting value of the
admittance of long antennae.
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Results associated with a similar geometry without a flange have been given by
Marcuvitz [4]. It is implied that these results were obtained by a method involving the
use of the Wiener-Hopf technique. In the present problem a similar technique may well
be practical, but the author has not yet made a comparison.

I. The geometry of the system to be considered is shown in Fig. 1. Cylindrical
co-ordinates (r, 6, 2) are used. The axis of an infinite, circular, conducting cylinder of
radius b > 0 is taken to be the z-axis. In the region z < 0 this cylinder is surrounded by
a semi-infinite coaxial conducting surface of radius @ (¢ > b), and this surface, r = aq,
z < 0, is terminated in the plane z = 0 by a perfectly conducting plane in the region
r > a, z = 0. A time dependence exp (Zwf) is assumed throughout, and rationalized
m.k.s. units are used.

We are to consider the electromagnetic field in the region bounded by the conducting
surfaces corresponding to a combination of axially symmetric transverse magnetic modes
in the line region a > r > b, z < 0. This type of field is independent of the co-ordinate
6, and it has the magnetic field components B, and B, both zero. From Maxwell’s equa-
tions, it follows that the electric field components are related to the magnetic field
component B, by the equations,

ik’

E = 7'31' (TBG))
zlczE _ _9Bs ¢y
9z’
EO =0,

where k is taken with a small negative imaginary part (k = k, — ik, , k. , k, > 0), and
B, must satisfy the equation,

( +——+ +k2——)B,—O 2

r or

Since the tangential component of the electric field vanishes at a perfectly conducting
surface, B, must satisfy the boundary conditions

a
5(rBe) =0 on r=>b, 3)
i)
5—(rB,)=O on r=a, 2 <0, @
r
i)
—z(B,)=O on z=0, r > a. (5)

We shall assume the total field to be made up of an incident wave in the dominant mode
within the coaxial line, with magnetic component B,,(r, 2) and a scattered field with
magnetic components By, (r, z) for z > 0, and B,_(r, 2) for z < 0. B,, is defined by the
equation,

By, = exp (—tkz)/r for a >r > b, z <0. (6)

With k; > 0, the radiation condition at infinity is satisfied if we take B,_ to be of back-
ward-travelling wave form within the line, and B,, to have a wave form travelling away
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from the open end of the line. Thus, in the half-space z > 0 the behavior of By, is given
by the relation

RBy, ~ f(¢p) exp (—ikR) as R— o, 0<g¢ <w/2, @
where R = (r* + 2°)'?, ¢ = tan™’ (r/z), and f(¢) is a bounded function independent of
R. At the edge r = a, z = 0, the condition on the total field which ensures the integrability
of the edge current and hence the uniqueness of the solution [2, 5] is that B, = con-
stant — 0(¢*®), and 8B,/dz = 0(c~'/*) as the distance o of the point of observation to
the edge tends to zero. The problem is now completely and uniquely specified.

II. To find the field in the half-space z > 0, we define a Fourier cosine transform
for all » > b by the equation,

Flp,7) = fo " Bu.r, 2) cos pz dz. ®)

The absolute value of this integral for large values of z is found from Eq. 7 to contain
the factor exp — k; (r* + 2°)'/%, and this factor ensures the absolute convergence of the
integral. The inverse of Eq. 8 is given by

B9 =2 " P, ) cos pe dp/r, ©

for all r > b.
If we multiply Eq. 2 by cos pz and integrate with respect to z in the range z > 0,
we find that

¥ 419 : 1 aB)
( + r ar tK )F(p,r) (az =0
so that for r > q, from Eq. 5, F(p, r) satisfies the equation
F 19 g ) _
Zwl2 ik - Yren-o, (10)
and for @ > r > b, writing L(r) for (3B,/9z2).-0 , F(p, r) satisfies the equation

(Tt 12 1k - Yra,n = Lo )

Here K = (k* — p°)'/?; that branch of the square root is taken for which when k; = 0,
K is real and positive when p is real and | p | < k, and for which ¢K is real and positive
when pisreal and | p | > k.

From Eq. 3, 9[rF (p, r)]/dr must vanish at » = b. On the surface r = a, By and dB,/dz
are functions of integrable square for all z > 0: the continuity of the field components
B, and E, across this surface therefore ensures the continuity of the functions F(p, r)
and 9[rF (p, r)]/dr at r = a. From Egs. 7 and 8 it follows that as r — «

Flp,7) ~ [0 " o) exp (—ikR) cos pz dz/R.

For large values of r this integral may be evaluated by the method of steepest descents:
the calculation shows that

F(p) 7') ~ ¢(p) exp (_ikr)/rl/zy
where ¢(p) is a function of p only.
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The solution of Eq. 10 which shows this behavior for large values of r is a multiple
of H,(Kr); H,(Kr) is that solution of Bessel’s equation for which as r — « for real or
imaginary values of K

(Kr)'?H,(K7) ~ exp [—i(Kr — 3x/4)][2/x]'"*.

When K is real this is the Hankel function of H{* (Kr). Similarly, H,(Kr) is a zero order
Bessel function which for real values of K is to be identified with the Hankel function
HP (Kr).

The solutions of Egs. 10 and 11 which satisfy the required boundary and continuity
conditions for F(p, r) and 3[rF (p, r)]/or are, for r > a.

F(p,r) = wH\(Kr) fb pL(p)[J.(Kp) Yo(KD) — Y.(Kp)Jo(Kb)] dp/2H,(KD),  (12)

and forb < r < a,
2F(p, N[J(Ka)Yo(Kb) — Yo(Ka)Jo(Kb)]/m = [J.(Kn) Yo(Kb) — Yo(Ka)Jo(KD)]

. fb ’ pL(p)Ho(Ka)[J,(K) Y o(Kb) — Y(Kp)Jo(Kb)] dp/Ho(KD)

— [J\(EnYo(Kb) — Y.(Kr)Jo(KD)] (13)

[ LA YolKa) — Vi IoKa)] dp
- [J 1(K7') Yo(Ka) - YI(KT)J o(Ka)]

fb pL(p)[J,(Kp) Yo(Kb) — Y1(Kp)Jo(KD)] dp.

These equations determine the cosine transforms of the magnetic field in the half-space
in terms of the function L(r) which is proportional to the radial electric field in the
gapz =0,a > r > b. ’

From Eqgs. 9 and 13 we may write down the total magnetic field in the gap. This is

" {J,(Kr) Yo(Kb) — Yl(Kr)Jo(Kb)} Hy(Ka)
PlJo(Ka) Yo(Kb) — Yo(Ka)Jo(Kb)| Ho(Kb)
J(Kr)Y(Ka) — Y,(Kr)J.(Ka)

_ JUEnNY,(Kb) — Y,\(Kr)J(Kb)
Jo(Ka)Yo(Kb) — Yo(Ka)Jo(Kb)

Bur,0) = [

0

fb pL(p) [J:(Kp) Yo(KD) — Y(Kp)Jo(KD)] dp —

fb pL(p)[J1(Kp) Yo(KD) — Yi(Kp)Jo(KD)] dp

[ LKA Y o(Ka) — ¥i(K )T oK) d.

T

III. In the region z < 0, @ > r > b, the field can be described in terms of a set
of axially symmetric transverse magnetic modes. These modes are associated with the
set of functions 7'/ ¢,(r), orthogonal in @ > r > b, where

eor) = 1/‘)’,

ear) = JW(K)Yo(K.0) — Yi(Kn)Jo(K,0),

and
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for integer values of » > 1. When n > 1, K = K, is the nth positive zero in order of
magnitude of the function J(Ka)Y(Kb) — Y,(Ka)J,(Kb), and K, = 0. For alln > 1,
(a — b)K, ~ n= [1]. If we put p, to be that value of p which corresponds to the value
K = K, , then the magnetic field component of any axially symmetric TM field within
the line is a linear combination of modes of the form ¢,(r) exp (& p.2).

We have assumed that an incident dominant mode B,, of unit amplitude travels
towards the open end of the line. If R, is the reflexion coefficient associated with the
nth mode reflected at the plane z = 0, for an incident dominant mode of unit amplitude,
then we may write the reflected field in the form

B,_ = Z;R,,ga,,(r) exp (ip.2), (15)
so that
3Bo_/8z = D ip,R.p.(r) exp (ip.2). (16)

n=0

By matching both the total magnetic field and its normal derivative across the open
end of the line we find that

Botr,0) = 3 (Ra + So)en®), (17)

n=0

and

LO) = 3 ipuBe — 8)en®, (18)

n=0

where $,., = 0 for m £ n, and §,,, = 1 for all integer values of m. Both the functions
r'2L(r) and r'/’B,, (r, 0) are functions of integrable square in @ > r > b, so that they
may be expanded in orthogonal series of the functions ¢,(r).

Thus,ifina >r > b

LO) = 3 o),
then
aN, = j; ) rL(r)e,(r) dr, (19
where
N, = [ e ar.
{ o = In (a/b), }
N, = 2[1 — [Jo(K.a)/J(K.D)T]/@xK,)
We can see therefore from Eqs. 18 and 19 that
@ = PR, — 80n), (20)

and from Eq. 17, that
fb "By (r, 0)pur) dr = Nu(Ra + 80.). 21)

Since we are able to write B,, (r, 0) in terms of the coefficients a, , Eq. 21 may be manipu-
lated to represent an infinite set of equations linear in the a, whose solution will determine
the field throughout the system.
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Thus, from Eqgs. 14 and 19, assuming that the required changes in the orders of
integration and summation are permissible, it follows that

k f 1By, Opu(®) dr = 3" Conta (22)
1

n=0

where

_ ” 2 2 Hy(Ka)pn(@)e.(a)
= b [ a0 g e

(23)
2N, 8wm |
K* — 7K2
It follows from Eqs. 21 and 22 that the infinite set of equations relating the coefficients
a, is

[Jo(Ka)Yo(Kb) — Yo(Ka)Jo(KD)] +

2 SonNm + @GN/ ((pr) = 2 Crnttn/k, (24)
n=0

for all integer n > 0.

IV. In the complex p-plane the integrand defined in Eq. 23 has for singularities
only branch points at p = =+ k, . It is clear that the path of integration for the integral
C.. must be deformed into an equivalent contour: this is necessary in order to avoid
passing through the branch point p = = k in the limiting case when k; = 0. Thus, in
the neighborhood of this branch point we can deform the path of integration into a
semi-circular arc of small radius § in the upper half p-plane. To examine the contribution
to the integral C,,, from this arc we put p = k + & exp 7p, 0 < ¢ < m, where we can
now take k; to be zero. Since as § — 0 the corresponding form for K is

K = (2k 8)'* exp (6 — m)/2[1 + 0(8)],
we can show that
w[Jo(Ka) Yo(Kb) — Yo(Ka)Jo(Kb)]/2 = In b/a + 0[é(a — b)];

it follows that for m = n = 0, when N, = In a/b, the absolute value of the integrand
for small values of 6 is 0(1), and the contribution tc the integral Cy, is 0(5). For m or n
not zero the contribution may be shown to be even smaller in magnitude. We may
therefore write C,., in the form of a line integral, this being the limiting case for § = 0.
The question of the convergence of this integral is considered in the Appendix. It is
shown there that C,., is uniformly convergent with respect to the parameters a and b
in the range a > b > 0. Since we have defined the branch of & so that for p
real, 0 < p < k, kisreal, and for p > k, k = — <u where u is real, it follows that

Cmu — * 2 2 HO(Ka)‘pm(a)¢n(a)
ko f dp{K * H(Kb)K® — K2I(K® — K.,)°

[T VoKD — VoK) T(KD)] + 2 %}

(25)

2 [ 2 2 Ko(pa) (@), (@)
+ wfo d”{” ¥ Kowb) & + K2 + K2)

)KAD) — LD )] — e}
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where K = (k* — p»)*, u = (p° — k%)%, and K,(2), I,(2) are modified Bessel functions

[6].
V. The first quantity of physical interest to be considered is the energy density at
large distances from the antenna. From Egs. 9 and 12 it may be seen that for r > aq,

By (r,2) = fw cos pzH, (kr) fa L(p)[J,(Kr) Yo(Kb) — Y (Kr)Jo(Kb)] dp dp/H(KD),

so that as r — =, since the integrand is an even function of p, we have that

«© d . _ 'K
B, ,(r,2) ~ const. f_ p(?f)l(’gﬁo(KZ) 7)

26)
: f L)) [T (KD Yo(Kb) — Yy(KNJo(KD)] dp.

This integral may be evaluated by the method of steepest descents. By putting
R = (r*+ 2% ¢ = tan"' r/z with 0 < ¢ < 7/2, we find that the saddle point is at
p = — k cos ¢, corresponding to the value £ = k sin ¢. The path of integration is deformed,
without changing the value of the integral, into the steepest descent path, which at the
saddle-point makes an angle of r/4 with the line joining the branch points. The value of
B,, for large values of R can now be given. This is

exp (—1kR) ¢

m A oL (p)[J,(kp sin ¢) Y (kb sin ¢)

B,, ~ const.

— Yi(bpsin ) Jo(kbsin g dp, &V
and from Eq. 19 after performing the integration, we find that
const. sin ¢ exp (—kR) . .
By, ~ @) : [Jo(ka sin ¢) Y (kb sin ¢)
kRH (kb sin ¢) (28)

_ : . _ Gaaeaa)
Yo(kb sin ¢)J o(ka sin ¢)] OZ esin e — K2
The energy density at large distances from the open end of the line can now be found
from the complex Poynting vector, and it follows that the power flow P in the radial
direction at large distances is given by

sin® p{Jo(Ka sin ) Yo(Kb sin ¢) — Y (Kb sin ¢)J,(Ka sin o)}’
R*{[Jo(Kbsin ¢)]* + [Yo(Kb sin ¢)]*}

{ i a.ae.a)

~ k*sin’® o — K.J °

P = const.
(29)

The second quantity which is of interest to us is the admittance of the antenna,
regarded as a termination of the transmission line. If we go far enough along the line
for higher order modes to be practically damped and then carry out standing wave
measurements, we may determine the dominant mode reflexion coefficient R, . The
terminal admittance Y, associated with this coefficient R, is given by the equation

Yl = Yo(Ro + 1)(R0 - 1)_1; (30)
where the characteristic admittance of the line Y, = 2rwe,/k In (a/b). From Egs. 20
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and 24, it follows that

Y, = 1Y, 2 Conta/a@oN, . (31)
n=0
In an isolated radiating system the only way in which a driving-point admittance may
be defined is by the ratio of current to voltage at this point. Thus, in this system if we
define an admittance Y, to be the ratio of the current at the foot of the antenna to the
voltage applied between the ground and the foot, then it follows, from expressions which
can easily be found for the current and the voltage, that

Y, = iYob 2 2 Connpa(b)/aoN, - (32)
m=0 n=0
The first term of this series is the admittance ¥, .

VI. The exact solution to this problem for general values of the quantities k, a,
and b involves the solution of an infinite set of linear equations whose coefficients are
infinite integrals. Even with the help of modern computing machinery the work would be
exceedingly difficult. We shall first consider, however, the solution for small values of
the parameter e = k(a — b). If we put ¢ = ka, and p = b/a, then it is clear that ¢ may
be small if either ¢ — 0, p 5 1 or if ¢ > 0, p — 1: the first case corresponds to the physical
problem of the antenna which is thin in comparison with the excitation wavelength, and
the second to the problem of the thick antenna with a low impedance line feed. We will
exclude, however, the case for which p — 1 and ¢ — 0, this being the case of the thin
antenna with a low impedance feed.

For the limiting cases ¢ — 0, p % 1, 0 ¥ 0, p — 1 the magnitudes of the functions
which appear in the infinite set of equations are derived in the Appendix. To solve the
problem when ¢ — 0, we first assume that in the equations 24, a, = 0 for » > 1. Then
from the first equation of the set, it follows that

ay = —2tk, as p—1, o #0,
or ¢ —0, p # 1.
If we take this first approximation, we find from the (n + 1)th equation that

iETCTO a
N 0

y =

)

=01 as p—1, g#0, or ¢ >0, p# 1.

Using these results for the orders of magnitude of the a, in the complete set of equations,
we find that as e — 0

a, = —2ik[1 + 0(¢)],
a, = 01), r>1.

We now find in the expressions for the physically interesting quantities that
a, = — 2tk is the only coefficient to make a significant contribution. This value for a,
is that which would arise in analysis of an open-circuited line ignoring end effects.
From Eq. 19, the unknown function may now be given in the form

L(r) = —2ik/r.
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ADMITTANCE Y=G+iBle=k(a-b),p=b/a, Y, = 27we,/k Infa/b)) .

Sk G/Y (e=0.1)
‘ —
3 =
3=
B/Y, =01 /% tex0

'r

J

\

s [~ BY,t6=003)
oL SSeo === ! - .

) 0.2 0.4 06 0.8 P

Fi1c. 2

The corresponding admittance of the radiating system, from either definition in Eq.
30 or 31 takes the form

Y = ’ikYoCoo[]- + O(f)]/No .

The value of Y in the limit as ¢ — 0, p 5 1 is O(¢). The limit as p — 1, ¢ # 0 does not
exist because the second derivative of Cy with respect to p does not exist. In this case
the strongest statement to be made is that the normalized admittance Y /Y, is zero.

Numerical values of the admittance for small values of e are given in the accompany-
ing graph (Fig. 2). The normalized admittance approaches unity as p — 0 for fixed small
values of o. The open-circuit approximation used to calculate results is not therefore ap-
plicable for small values of p. From Equation 29, when ¢ — 0 we find that

20w [Jo(osin @) Yo(opsin ¢) — Yo(o sin ¢)Jo(op sin o)]*

P= k' [Jolop sin @)]* + [Yo(op sin ¢)]* [1 4 0(9].

For r > a at large distances from the end of the line, where tan ¢ = r/z this expression
may be simplified in certain cases.
In the case when o — 0 p = 1

P =~ 20[In p]*/uk’r*{[In (op sin ¢)/2]" + 7°/4}.
In the case when p — 1, ¢ 0 is more interesting. Thus
P = 8u(l — p)*/uk’r’n*{[Jo(opsin ¢)]* + [Yo(opsin 9]},
and when sin ¢ & r/z for small enough values, r > a,
P~ 8u(l — o)*/uk’r’n*{4[In (or/22) /7] + 1}.

This expression shows that we may expect a behavior for P like [1/r In r]* for short wave-
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lengths when ¢ = ka = 0(2) for large values of z. More generally, if, when p — 1 and sin
¢ is not small, we take values of ¢ which are large, but not so large that the relation
7(1 — p) = € — 0 is not satisfied, we find that

P = 4we(l — p) sin o/unk™”.
VII. In the general case, for ¢ > 0, we shall prove two results. The first is

Theorem 1. The infinite set of equations given in Eq. 24 has for a solution at most one
set of values a, if ¢ = ka(ab) > 0.

It will be recalled that a, is a coefficient in the orthogonal expansion ina > r > b
of the function »'/* L(r).

Suppose that we have fixed rr < ¢ < 7 (r + 1) so that p,, (0 < m < r) is real and
Pm = @n (m 2> r + 1) is also real. The hcmogeneous set of equations corresponding to
Eq. 24 is

KN nn/iPm = 2 Comlm , for m > 0. (33)
n=0
Putting a,, 4+ 8, = @ , Cpa = K, + 7L,., we find that

z: (Kmnan - Lman) = kNmBm/pm ) fOI' m .<_ r,

n=0

= kN notn/qm , for m >r 4+ 1.

> (KumBs + Lnats) = —kNpan/pm, for m <r,

kN,Bn/qn, for m >r+ 1.
It follows that

—'Bm Z Lman — Op Z Lmnan = 07 fOr m Z r + 1)
n=0 n=0 ) (34)

= kNm(afn + ﬁfn)/pm ) for m < r,
so that

k ; Nm(a?n + B?n)/pm = - z Z (ﬂmLman + amLmnan)'

m=0 n=0

Now

— 9% fk 2n(@)en(@)K*a’[Jo(Ka) Yo(Kb) — Yo(Ka)J(Kb)] P
" (K — KK — KD){[JJED] + Y&} P

so that the result of changing the orders of integration and summation in Eq. 34 is
r k dp K2 az

2 2 _
T Voot + 8/on = =2 [ 7t DT

{2 =)}
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The right-hand side of the equation is < 0. The left-hand side of this equation is, how-
ever, a non-negative quantity so that each side of the equation must be zero. It follows
that

Qp , Bm =0 forall m > 0.

Given the infinite set of equations, it is necessary to know whether an approximate
solution can be found by solving only the first N 4 1 equations for the unknowns
(n < N), taking all the remaining unknowns to be zero. We shall therefore prove the
following

Theorem 2. (1) The determinant of the finite set of equations
N
kN w2 Som + Gn/ipm) = 2 Conta, 0<m<N, (35)
n=0

does not vanish for any positive value of e
(ii) The unique solution of the finite number of equations is the set {a},0 < n < N,
and lim (a, — a¥) = 0as N - «.

The first part of the theorem is proved in the same way as in Theorem 1. For the
second part we find from Eqs. 24 and 35 that

©

N
kNm(am - aZ)/pm = Z Cmn(an - aﬁ) + E Cnman .
n=0

n=N+1

Now from 19, using Parseval’ Theorem, since /> L(r) is a function of integrable square
ina > r > b, we see that

f rLOFdr = 3 | an P No = 0(1), for > 0.
b 0
Since N, = 0(r"®) as » — o, a necessary condition for the convergence of this series
is that asm — o, for 6 > 0,
[a. | =0('").

It is shown in the Appendix that the infinite integral C,.., is absolutely convergent for all
€e>0.Asn— o |Cn. | = 0(n"° so that

®

> Coa,

n=N+1

= 0N

N
Om =

if N is large enough, for all m > 0.
Thus

) - zN: Comnl@, — a;’:’) = 0': ’ (36)

' kN n(an — am
ipm n=0

and since the determinant of the finite set of equations is non-zero, the solution of 36
must be of the form

an — a = 0(ah).

Therefore, we may approach as close as we like to a solution of the infinite set of equations
if we take N large enough, and from Theorem 1 this solution is a unique one.
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0=0 e =n/2

©=-ioc0
F16. 3

Theorem 2 shows that we may obtain a useful approximation to the solution by
solving for the first N + 1 unknowns, and we are able to use a variational method to
hasten the convergence to a correct result. This approach may be made in a more general
problem in which there may be set up any number of propagating modes within the
coaxial line.

APPENDIX

We transform the integrand in Eq. 23 by putting p = k cos 6. To correspond to the
branch of K, we must take the path of integration in the complex 6-plane as shown in
the diagram (Fig. 3). '

We are principally interested in the behavior of C,,, for small values of the quantiy
¢ = k(a — b). We have to consider separately the possibility of the ratio p = b/a approach-
ing unity with ¢ = ka not small, and also the case in which ¢ is small and p is not close
to unity.

From the definition of the functions ¢,(a) in Sec. III, it follows that as ¢ —» 0

ap.(a) = —2¢/nkx®, for n >1
=1, for n = 0.

The functions N, defined in the same section behave in the following manner for
small values of e. Thus, for any value of ¢

No=lnp= {0(1) if p-1,
O if p—1,

and
N. = 2{1 — [Jo(K.0)/J(K.D)]"}/(xK,)*,

N, = 1;?2]527 {1 — [Jolnw/1 — p)/Jo(nmp/1 — P)]2},

]

=0 if p#1 g —0,
=0 if p—>1 g # 0.
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We shall first consider the convergence of the integral C,,. . On the path C we have
already established the bounded nature of the integrand near the origin, since we have
examined its behavior in the p-plane near the branch point p = -+ k. This property
is independent of the values of the parameters o and p. On the negative imaginary axis
the integrand I,,, is a real function involving modified Bessel functions of real argument.

We must examine the uniformity of convergence of the integral [ I,..de with respect
to the parameters ¢ and p. Let us take a small positive number o, as close as we like to
zero. Then, for 0 < p < 1, ¢ > o, > 0, we may choose ¢, >> sinh™ (1/4,), and for
¢1 > ¢o We may use the asymptotic expansion of the modified Bessel functions. Since
foralln > 0, K, > 0, it follows that

<2 [ _de_ ag.(a)apn(a) . ]
o smh [N" Omn + 20 sinh ¢ (1 4+ 0(esinh )™ |-

I mn d¢
$1
Since for 8 > ¢, , & oms 8 > 1, it follows from the convergence of the integral [, cosech 6d6
that C.., is unformly convergent with respect to ¢ and o in the given range. This is true
forallm,n > 0.

Now consider Cy . The integrand vanishes for e = 0,p = 1l oro ## 0, p = 1. It is
clear that for p ¥ 1, ¢ is a factor of Cy , and for ¢ = 0, (1 — p) is a factor. The derivative
of the integrand with respect to p is uniformly integrable in the same range of parameters,
and this vanishes also for p = 1; it follows that for o = 0, pl, Co = 0(¢*) while for
p# 1,06 — 0Cy = 0(¢). The second derivative with respect to p does not exist if p = 1,
o # 0, nor does the first derivative with respect to ¢ when ¢ = 0, p = 1.

The magnitude of C,,., for at least one of m or n not zero is determined by the magni-
tude of the integrand on the path C at a finite distance from the origin. Since K, ~ nxk/e,
we find that

Con = Cho = 0(¢") for p—1, ¢ # 0,
= 0() for p#1, c—0,
and that for both m and n not zero,
Con = 0() for p—1, o0,
= 0() for ¢—0, p # 1.
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