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TORSION AND EXTENSION OF HELICOIDAL SHELLS*
JAMES K. KNOWLES (California Institute of Technology)

AND
ERIC REISSNER (Massachusetts Institute of Technology)

1. Introduction. The present paper is concerned with the problem of rotationally
symmetric deformations of thin elastic shells the middle surface of which is a portion of
a right helicoid. Particular consideration is given to the problem of a uniformly pre-
twisted thin strip which is acted upon by tractions which result in equal and opposite
axial forces F, and equal and opposite axial torques T (Fig. 1).

The differential equations for stresses and deformations of thin homogeneous, isotropic
helicoidal shells, as used here, have been derived elsewhere [1]. In what follows they are
employed in the form which they assume for rotationally symmetric states of stress and
strain. Insofar as the problem of the pretwisted strip is concerned one of the essential
aspects of the analysis is the connection between rotationally symmetric states of strain
which depend on states of displacement which are not rotationally symmetric. The details
of this connection are established in the present paper.

Of particular interest in the problem of the pretwisted strip are the relations between
the applied force and torque on the one hand and the angle of elastic twist and the
relative axial extension on the other hand. In this connection certain explicit results
are presented which generalize earlier work of Chen Chu [2] regarding the torsional
rigidity of the strip.

2. Equations for helicoidal shells. Let r, 6, z be cylindrical coordinates and let

z = ad (2.1)

be the equation of the middle surface of the shell. The constant 2ira is the pitch of the
helicoidal middle surface. The parametric curves r — constant and d = constant on the
middle surface of the shell form an orthogonal net but are not the lines of curvature.

The state of stress in the helicoidal shell (2.1) is described by stress resultants Nr ,
Ne , NrS, Ne, , Qr and Qe and stress couples Mr, Me , Mr0 and M0, referred to tangential
and normal directions at the edges of an element of the shell (Fig. 2). The differential
equations of equilibrium of an element of the shell are [1],

£ (aNt) - r-Ng +-Qe = 0, (2.2)
or ou a a

f- MU + ^ + - Ner + - Qr = 0, (2.3)or o 0 a a

~ (<) + # - - wre + Ner) = o, (2.4)or o0 a

£ (aMr) + ^ - r- Me - aQr = 0, (2.5)
dr 66 a
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Fig. 1 Pretwisted strip

Nr0

Fig. 2 Element of helicoidal shell

+^+r-Mer-aQe=lO, (2.6)
or ou a

Nre -Nlr + -2 (M, - Mr) =L0. (2.7)a
The quantity a is defined by

a = (a2 + rY\ (2.8)
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The system (2.2) to (2.7) is completed by a system of stress strain relations which
here is taken in a form corresponding to the relations of Fltigge [3] and Byrne [4] for
lines of curvature coordinates and which is [1],

Nr
Eh

1 — v

it Eh ,
N0 — n 2 \*61 — V

2 (er + vee) — 4 7^7^—2T I"t* — (1 — f) 4 (er — e9)l, (2.9a 12(1 — v J L J

+ ~ 7 12(f- »2) ~ (1 ~ V) a2 (€* ~ °] ' (2"10

N„ =2(lE+p)yre ~ j 24(f - ,*) [(1 + ")k? + (3 ~ ")4]' (2"U

N» = 2fTR^" - ?24(f37)[(1 + ")k* + (3 - ")k*]' (2-12

(2.13

(2.14

7i i _ Eh3 ( * , * 1 ~ " £. ^
12(1 - v2) \Kr "K" 2 a7'6) '

nr Eh3 ( * i * 1 — v a \
~~ 12(1 — v2) \ 9 ~~ 2 a2Tr7 '

if" - mnb) [Mr -* - ?(" + ~')] ■ (2-15

12(1 "?<<'+"4 (2-16
71 It Eh
Mor

The strain quantities e, y, k and r are expressed in terms of radial, circumjerentia
and axial components of middle surface displacement u, v and w as follows;

•- -1 • (2-17

+ + (2.18a do cc do a

1 du , r dv , a dw v
yn = --^ + -^- + --r: —, (2.19ado a or a or a

r d2w a2 dw . a d2v ar dv . a a du
K* = — 71 3^- + -t-2 S7 + 1# 377) (2.20a dr a dr a dr a or a a do

* — L- d2w I SL A §]£ j_ SL (o oi
K6 3 -3/32 I 3 /)2 I ^ A Q * 1a du a du a dr a du

T* = —2
2r d2w 2a d2v 2(r2 — a2) dw 4ar dv 4ar

+ 4 (2-22a dr d6 a dr dd a d9 a dd a

For the formulation of boundary conditions it is necessary to have expressions for
effective edge stress resultants which include the action of the edge twisting moments
and their derivatives, insofar as they are statically equivalent to distributions of edge
forces. Radial, circumferential and axial components of these effective edge stress re-
sultants are, along edges r = constant,

Rr = Nr + -2 Mre , (2.23)a
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Hr = - Nr, - ~ Qr - 4 , (2.24)a ol a ou

Zr = - Nre + - Qr + L2 , (2.25)a a a do

and, along edges 9 = constant,

R. = Ne + 4 Mer ,a (2.26)

He = - Ne - - Qe ~ F Me) , (2.27)a a or \a J

z, = -Ne +r-Qe (2.28)
a a or \ot /

In addition this procedure introduces concentrated corner forces of magnitude
± (MSr + Mr0) in the direction of the normal to the middle surface of the shell, with
components ± ir/a) (Mr0 + MBr) and =F (a/a) (Mr0 + M0r) in the axial and circumfer-
ential directions, respectively.

3. Boundary conditions for the problem of the pretwisted strip. We consider a
helicoidal shell with edge coordinates r — ± b and 6 = ± 60. The usual polar coordinate
interpretation is attached to the meaning of negative values of r; the point (— r, 9) is
the image of the point (r, 6) under reflection in the z-axis.

We assume that the edges r = ± b are free of stress and that the edges 9 = ± 60
are acted upon by forces F and torques T in accordance with Fig. 1. We then have the
following system of boundary conditions along edges r = constant:

r = ±b: Rr = Hr = Mr = Zr = 0. (3.1)

Along edges 9 = constant the boundary conditions are taken in a form which insures
that a rotationally symmetric state of stress will exist in the strip. Thus we prescribe,
at 9 = dz 6o

f Ze dr - [- (Mre + MSr)T = F, (3.2)
J-b L« J-6

f He dr + \- (Mre + M9r)T = 0, (3.3)J-i L« J-i,

f^Nerdr = 0, (3.4)

f rHe dr + \- (Mr6 + Mgr)\ = T, (3.5)J-b La J-i

f rZe dr - - (Mre + Mtr) | = 0, (3.6)
J-b La J-6

J Me dr = 0. (3.7)

4. Displacements and stresses for the pretwisted strip. Considerations of symme-
try indicate that displacements for the pretwisted strip problem should be of the form
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u = u(r), v = v0(r)9 and w = w0(r)8. The requirement that the components of strain
(2.17) to (2.22) be independent of 6 leads to the conclusion that admissible displace-
ments are of the form

u = u{r), v = k^d, w — k2d, (4.1)

where kt and k2 are constants.
For displacements of the form (4.1) we have further that k* = k% = yrS = 0. In

view of Eqs. (2.11) to (2.14) this means that the displacements (4.1) are associated with
the vanishing of four resultants and couples,

Nrf — N tr — Mr = Mg = 0. (4.2)

The equilibrium equation (2.3) then implies

Qr = 0, (4.3)

and the following system of differential equations for Nr , Ns , MrS , MSr , Qe , and u
remains

a(aNr)' — rNs + aQs = 0, (4.4)

a(aMrS)' + rMSr — a2Qe = 0, (4.5)

,T Eh ... a Eh3 f . ,, . a , .
Nr = (er + *,) - -5 12(1 _ ^ [_T* -(!-,)-, (e, - e.)

a

ax Eh ... a Eh3 [~ . . a . .
Ne =  —2 («« + Vtr) 2 TW7: 2T T* — (1 — v) -5 (e9 - er)

I — v a lz(l — v ) |_ ol

M- - mrh] ■
M" ~ 12(f- -■) [' 2~ ~ ?

In these equations primes denote differentiation with respect to r, and

er = u', t) = —2 u -\- kx —2 -|- k2 ~2 , (4.10)
a a a

* 4ar , 2a(a2 — r2) , , 2(r2 — a2) tA ,
T* = r u i—j   + fc2 — 4—-■ (4.11)

(4.6)

(4.7)

(4.8)

(4.9)

a a a

Three of the four boundary conditions (3.1) are automatically satisfied and the fourth
may be written in the form

r = dtb: a2Nr + aMrS = 0. (4.12)

Of the six boundary conditions (3.2) to (3.7) four are automatically satisfied and the
remaining two may be simplified (upon elimination of Qs) by suitable integration by
parts to read

F = [" (- Ne+ Mre + 4 Mer) dr, (4.13)
J-b \a a a J

T = fb (- Ne + ^ 2 Mre + Mer) dr. (4.14)
J-b \a a a J
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5. Non-dimensionalization and simplification. In Eq. (4.1) we may write

fc, = aco, k2 = a8, (5.1)

where co and S are respectively the angle of twist and the axial extension, both per unit
of axial length.

We further introduce a dimensionless displacement and dimensionless resultants
and couples as follows:

11
u0 = , (5.2)

_ Njr _Ne _VQ<L
Ur Eh ' Ue Eh ' qe h2 Eh ' (- ')

  bMrg _ bM)r , .
mr6 ~ Eh3 ' mer ~ Eh3 ' )

The quantities u0, n, q, and m are considered as functions of a dimensionless coordinate
p defined by

We set finally

p = r (5.5)

X = -• (5.6)a

The parameter X measures the pretwist of the strip and vanishes for an untwisted plate
located in the xz-plane.

Introduction of (5.1) to (5.6) into Eqs. (4.4) to (4.11) transforms these equations to
the following form

dp [(1 + x2p2)V2n'l ~ (1 +\v)1/2 n9 + (1 + X2p2)1/2 V2qs = (5-7)

^ [(1 + X2p")1/2mr9] + ^ _j_ ^2^2y/2 mer — (1 + \~p~)'/2qg = 0, (5.8)

(1 - v)nr = er+vee-~ [&T* " HA? ^ ~ 6,)]' (5"9)

2\ , i x r, * (i - ")x, ,i(1 -v)ni = ee + ver _ _ rT^5(£9 - er) J , (5.10)

where

12(1 — v2)mrS = * ^ br* — ^ _|_^x2p2 vt'^' (5-11)

12(1 — v2)m„r = 1 v br* — A, 2 («r + vee), (5.12)
Z I t A p

dug x2p , s , Xp2bo) , S
dp' 69 ~ l + x2P2 Mo(p) + l + x2P2 + l + x2P2 ' (5,13)
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, * —4X3p . 1 — xy _ X2p2 — 1
br — . 2 2\2 "o -f- 2bw . 2 2\2 "+~ 25X ,1 . - 2 2\2 • (5.14)

(1 + X p ) (1+Xp) (1 + X p )
The system (5.7) to (5.14) is to be solved subject to the boundary conditions (4.12),

which take the dimensionless form

p = ±1: nr + , . 2 T2 mre = 0. (5.15)
1 T A p 0

The expressions (4.13) and (4.14) for the force F and the torque T assume the form

^ f1 T ne , X3p2 — X h2 , X3p2 /t2 1 ,
F - Ehb J^ |^(1 + x2p2)-1/2 + (J + X2p2)3/2 b2 rnre + (1 + x2p2)3/2 b2 mer J dp, (5.16)

m ™ ,2 r1 r Xp2 , i - XV h2
T ~ Ehb J_t L(i + \2Py/ine + (i + x2P2)3/2 b2 m"

1 h2 1
"1" ̂  + ^2^2y1/2 ̂2 J ^P- (5.17)

We now assume that the pretwist parameter X is of order of magnitude unity and
not large compared with unity, and that all dimensionless resultants and couples are of
the same order of magnitude. Considering the fact that h2/b2 <<C 1, we may then neglect
certain of the terms in the system (5.7) to (5.17) and thus reduce it to the form

j-p [(1 + X2p2)1/2nr] - (1 +Xxy)i/2 n, = 0, (5.18)

^ [(1 + \2p2y/2mre] + ^ J>p2y/2 mer = (1 + X2p")17"?« , (5.19)

nr = , (5.20)
1 — V

ne = , (5.21)
1 — V

- TT^j [if-" br* - (,, + „.)] , (5.22)

(5.23)

12(1

m"r = 12(1 - V2) \ 2 bT* ~ r+Ty(er + '

p = dbll 7ir = 0, (5.24)

f = Ehb y*1 +t2P2)i/2 dp> (5-25)

rr r,, ,2 f' [ Xp2 , 1 - X2p2 fc2
T ~ Ehb L Ld + \2Py/2n°+ (i + x2P2)3/2 b2 m-e

•f* ^ | \2p2y/2 fo2 mer] (5.26)

6. Reduction of the differential equations. The resultants nr , ne , and the couples
mrB and mBr are expressed in terms of w0(p) by (5.20) to (5.23). The moment equilibrium
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equation (5.19) serves to express qe in terms of u0 ■

12(1 - v2)qe =
—v\ d u0 (4 — 3p)A p du0

1 + X2p2 dp2 ~ (1 + X2p2)2 dp

i 4 3I 7 (1 — v)XV — 2(3 — v)\2P . (7 — 5v)\3p . .
+ (1 + x2p2)3 - + 5 (1 + X2p2)3' ((U)

The remaining condition (5.18) for radial force equilibrium provides the following
differential equation for u0 .

d2u0 X2p du0 . v\2 — XV
dp2 + 1 + X2p2 + (1 + X3P2)2 Uo

~ h r(! ~ v)^p _ (i+")xp I (i+f)x2p , .
~ Li + X2p2 (1 + X2P2)2J + (1 + x2p2)2' (b-2)

The boundary condition (5.24) then becomes

, , du0 , vX2p , t v\p2 , „ c n
P = ±1 . -T h ,,.22 Uo + Oco 2 2 + 5 ...22 = 0. (6.3)Up 1 + A P 1 T X P 1 T X P

Thus Uo(p) is a solution of the boundary value problem (6.2) and (6.3); it will depend
on oj and 8.

In view of the linearity of the boundary value problem we may write

u0 — buu i + Su2 (6.4)

and split (6.2), (6.3) into the following two boundary value problems for «, and u2 .

_ (1 - v)\p _ (1 + ")Xp_ ,6 5)
~ 1 + X2p2 (1 + X2p2)2 ' lb"5j

dui , v\2p —v\
P-±i. + i + xy«i - i + x3 ' (6"6)

T _ (1 + ")X"p ,p -\
Lu2 — /-, _|_ \ 2 2\2 j (6.7)U + a p ;

, i. du2 , i>X2p —v
p-±1- d7 + rTxV 2 ~ 1+ XV ' (6-8)

where L is the differential operator on the left side of (6.2).
The differential equation Lu = 0 is, in different notation, the equation derived by

Sanders [5] for helicoidal shell problems in which the displacements are independent
of 6. It is possible to reduce this equation to hypergeometric form in a number of different
ways, but no use will be made of this possibility in what follows.

7. Influence coefficients. When the boundary value problems (6.5) to (6.8) have
been solved, we shall have all quantities expressed in terms of known functions of p,
and the constants co and S. Thus by (5.20) to (5.23) and (6.4),

(1
2V. j, T du, , v\2 p ,-,k - b"lj; + r+Yp*u> + v\p2

1 + X2p2.

+ 8
du2 v\2 p . v

j —I -j | -v 2 2 U2 - . .22_dp 1 + X p 1 ~r X p _ (7.1)
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(1 - v2)ne = 4 ^ Wl + 1 A/]

+ {" S +1 + xvM2 + r+W]' (7-2)
ion 2\m _ J, r ~vX du* (3 - 2v)\3 p (1 — v) - (2 - r)x2p2~|
12(1 v )mr9 - bco^ + x2p2 ̂  (1 + x2p2)2 u, + (1 + xV)2 J

i J ~v^ dUl _ (3 — 2v)\3 p (1 — v)\3 p2 — (2 — f)\~1 . .
Li + x2p2 dp (1 + X2p2)2 2 + (1 + x2p2)2 J ' (7-3j

= 6o,[rtn/i 2n 1 | —X dw! (2 — p)X3p , (1 — v) — X2p2
12(1 » )mSr - H1+ X2p2 dp (1 + x2p2)2 u, + (1 + xV)2

f —X du2 (2 — y)X3p (1 - v)\3p2 — X~| , .
+ Ti + x2p2 rfp (1 + x2p2)2 M2 + (1 + x2p2)2 J' (7-4)

When these relations are introduced into the force and torque conditions (5.25),
(5.26) we have two relations between the force F and torque T on the one hand and the
angle of twist w and the axial extension 5 on the other hand. These relations may be
written in the form

F = {2Ehbyps)S "I- (%Ehb Xy (7.5)
T = (§Ehb2XyTS)8 + (iEhb3\2yTu + %Gh3by)u, (7.6)

where the dimensionless influence coefficients y are given by

„ 1 f' f v du2 \2fU2 1 "I ,
7" ~ 1 - ,2 Jo L(1 + X2p2)1/2 dp + (1 + x2p2)3/2 + (1 + X2P2)3/2J dp' (7'7j

3 1 f' f v dui . X2p . Xp2 ~| . .
y- - i _ „2 x I Ld + x2P2)1/2 dp + a + xV)3/2 Ul + (i + x2P2)372J dp' (7-8)

3 /•' T vp2 du2 , x2P3 , p2 1 ,
7rJ ~ 1 - v2 Jo L(1 + X2p2)1/2 dp + (1 + x2p2)3/2W'2 + (i + x2P2)3/2J dp' (7>9)

5 1 f' »<p2 dui x2p3 . Xp4 1 . .
7r" ~ i - „2 x Jo L(i + x2p2)1/2 dp + (i + x2p2)3/2Ml + (i + x2p2)3/2J dp' (7-1Uj

and finally

/'Jo
dp 1 + (4X2/3) + (8X4/15)

o (1 + X2p2)7/2 (1 + X2)572 (7.11)

In the integrals (7.7) to (7.11) use has been made of the fact that ux and u2 are odd in p,
so that the integrands are even and = 2f0 .

It will be shown in Sec. 8 that when X = 0 we have yFi = yfu, = Ttj = =7=1,
so that (7.5) and (7.6) become

F = 2FJib, T = §G%3b co,

corresponding to well-known results in the theory of extension and torsion of a flat plate
by end loads.

A straightforward application of Green's formula, making use of the fact that u-,
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and u2 are solutions of (6.5) to (6.8), shows that yFai = yTS, as is in fact required by the
reciprocal work theorem of elasticity.

In addition to the flexibility relations (7.5), (7.6), we have the associated inverse
equations

co = KaTT + KaFF |

8 — KstT + KipF J
It is readily shown from (7.5) and (7.6) that

3

(7.12)

K„ r =

Kst = K

T 2Gh*b[y(\) + (4Eb2/15 Gh2)\2f(X)]

-Xfc(X) 
2 Gh3[y(X) + (4Eb2/l5Gh2) X3/(X) ]

kSF(X) + (3Eb2/5Gh2)X2g(X)
= 2Ehb[y(X) + (4Eb2/15Gh2)X2j{X)] J

(7.13)

where the abbreviations

,an 9 5y Fo>yTs
~ 4 ^T" ~ 4 ~y~in~ '

Yfj Tfj

*.f(X) = — , flr(X) = ^

have been used.
In the absence of axial forces, the torque T and twist w are related by

T = la,

where the torsional rigidity I is derived from (7.12) and (7.13) as

(7.14)

— - f Gh%
KaT

»}t(X) + Tk 7^ h X2/(X) I • (7.15)15 G h
In the absence of torque the axial force F and the relative extension S are related by

F = KS,

where the axial stiffness K is given by

T? 1 - rn.l. -y(X) + (4-E1 b2/15Gh2)X2f(X)
Ksf kSF(X) + (3Eb2/5Gh2)X2g(X)' (7Jb)

In the following section the first three terms in the power series expansions for
yr«(X), 7f„(X), 7r»(X), t(X), /(X), fe(X), kSF(\), and g(\) are obtained by perturbation
methods.

8. Perturbation solutions. All quantities of physical interest have been expressed
in terms of the solutions of the two boundary value problems (6.5) to (6.8). Inspection
of these problems indicates that u,(p, X) is odd in X and u2(p, X) is even in X, while both
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are odd functions of p. For sufficiently small X, we obtain solutions in the form

ui(p, X) = Xm^'Cp) + X3Wi3)(p) + • • ■

w2(p, X) = «20>(p) + XV2'(P) + •■•-] (8.1)

Introduction of these assumptions into the boundary value problems (6.5) to (6.8)
leads to a sequence of boundary value problems for the u^ip). These may be solved
successively by repeated integration. The results of such calculations are

p 3
Mi = — ̂  p X + p + Qb+ \+ ib)p5]x3
+ 2N 9 + 5v , (1 - v2)(l + v) 3 (135 + 383* + 57„2 + vz) 7\

(-1 ~ " ) o« P + ^ P   P J*36 24 y 2520

+ 0(\7), (8.2)

i r i ~ ^ i (i h~ v)2 sT2 1 f3 n. V1 2nU2 = -vp + I - —-— p +   p IX + I - (1 + f)(l - V )p

, 1 n 2W, , V 3 (1 + ")2(15 + v) ,+ 12 ( )( + v^p ~ 120 p X4

I (1 + p)2(l — v)(31 — 37f) (1 — p2)(l + v)2 3+ L 144 P 16 p

_ (1 — p2)(1 + v)(15 + v) 5 1 (1 — p2)(515 + 6Qy + f2) 7I.6
240 p + 5040 • p J

+ 0(X8). (8.3)
6

5-

4 -
First Approximation
(Chen Chu)

I
T 3*0

2 -

I -
Zeroth Approximation
( St. Venant)

J I L 
O.I 0.2 0.3 0.4 0.5

X

Fig. 3 Torsional rigidity ratio vs. pretwist parameter for v — 1/3 and 2b/h = 10
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Introduction of the perturbation solutions (8.2) and (8.3) into the integrals (7.7)
to (7.10) gives the power series expansions in X of yFS, yFa = yT,, and yTa ; y(X) may be
directly expanded from (7.11). These expansions are

3 +4* , 29 + 88r + 5fr\4 . n(1<s,
yFS = 1 g— X -| — X + 0(X ),

_i 9 + 8y ̂  2 , 161 + 304, + 152,\ 4 ,
If Fu TTb 1 A ~T~ 280 ) y

. 45 + 20, ,2 , 531 + 504, + 232/ %4 ,yr* = l — —^— x + — x + U{\),

7.2 I 63 , 4 . ~ 6v

(8.4)

7=1— -X2 + ^qX + 0(X ).

These in turn provide the expansions of /(X), fc(X), k6F(\) and g(\) defined in (7.14).

r   1 33 4, 2 , 427 152, -f- 8, . 4 . 6\' — 42 840 "(M.

(8.5)
i _ 1 - + 42+3a1"-4'-'x- + o(x'),

- 1 - |(1 - '»■' + 45 - ^ ~ X' + O(x'),

12 — 4, , 2 , 828 — 486, + 52/ * 8
g = 1  21 + 2835 X +0(X)-

In particular the torsional rigidity I of formula (7.15) takes the form

1 = '{i1 ~ +1X4 + '")

±Etf.,( 33 - 4,.g , 427 - 152, + 8/ , \~|
+ 15 Gh2 V 42 + 840 *+•■■)]>

where

h = h-0 = iGh'b (8.7)

is the St. Yenant torsional rigidity of a flat plate of thickness h and width 26. If only
the first term in each power series in parenthesis in (8.6) is retained, we obtain the Chen
Chu approximation [2]

(8.6)

= /«>(1 + ilfH <8-8>
indicating the increase in torsional stiffness for small pretwist. Figure 3 compares the
Chu approximation (8.8) with the second approximation (retaining X2 terms in the two
power series) and the third approximation (retaining X4 terms).

Corresponding results for the axial stiffness K of (7.16) are obtained by inserting
the power series for 7, /, kiF and g into (7.16). There follows
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K0
(l _ZX2 I §3 4 \ _£E 2/ _ 33 4v 2
\ 6 + 40 + / + 15 G h2 \ 42

(t — ̂ x,+ 45 - 38, — ,-x.+ ..,), 427 - 152f + 8v\ 4 ,+ 840 X + '

. ZEb2 J 12 — 4v 2 . 828 - 486* + 52^ , Nl"1
+ 5 Gh2XV 21 2835 X + ,'7J' (8"9)

where

K0 = Kx,o = 2Ehb (8.10)
is the axial stiffness of a flat plate according to plane stress. If only the first term is
retained in each of the four power series in parentheses in (8.9) there follows what may
be considered as an analogue of the Chu approximation;

rc ~ rc 1 + ^b2/i5Gh2)\2
~ 0 1 + (3Eb2/5Gh2)\2 { )

Figure 4 compares the first approximation (8.11) with the second and third approxi-
mations obtained by retaining the X2 and X4 terms, respectively, in the four power series
in parentheses in (8.9).

In addition to the influence coefficients, the stress resultants and couples themselves
may be calculated by introducing the expansions (8.2) and (8.3) into the expression

 T r__
^Zeroth Approximation
( Plane Stress)

0 O.I 0.2 0.3 0.4 0.5
X

Fig. 4 Extensional stiffness ratio vs. pretwist parameter for v = 1/3 and 2b/h = 10
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(7.1) to (7.4) for nr , ne , mre , and mSr . We obtain

nr = fewj^-Hl — P4)*3 + (9 ^ + g " P2 ~ ^j2 " p6)X5 + ' " J

+ (-id - p>- + + _ k±±p.)x, + ...]

, [ 2, (v ,12 + , 4V3 hv + 5,2 2 — , — v2 2ne = b^P X - ^ + -J2- P Jx + ( —— g p

378 + 57,+ ,2 ,VB 1 J (v 1 2 + v 2V2+ 360 PJX +---J + aL1-l2 + ^_VX
, /3, + 3,2 2 — v — ,2 2 , 28 + 17, + v2 4\4 ,+ [——   p + ^ P)\ + - -.J ,

in/1 I \ , [, , , , N 2,! . (v + V2 84 + 33, + ,2 4V4 .12(1 + v)mre = ow 1 — (4 + ,)p X + I - h — p J\ + • • • I

(8.13)

v + v2 10 + 9, + v2 2\,3 1 / 3, + 6,2 + 3,3
2 P)X +l 8

12(1

— (2 + ,)X + ^ - h ^ ^

, 6 - , - 8,2 - ,3 2 204 + 217, + 38,2 + ,3 4V 5 ,
+ 4 p 24 pr + •••]'

+ ,)m9r = bwj^l — 3p2x2 + ^ ^2 5" p4)^4 + ■ ■' J

3 + 6, + 3,2+ f-x + (i±i+»±»l,y + (-
, 1 - 2, - 3,2 2 101 + 82, + 5,2 \B , 1+ 1 P 24 p ^X + ""' I' (8"15^-]•

If (7.12), (7.13) and (8.5) are used to express w and 8 in terms of F and T in (8.12)
to (8.15), the expression for stress resultants and couples are obtained in terms of F
and T. The corresponding expressions are lengthy and will not be given here.
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