
107

RESPONSE OF SHALLOW VISCOELASTIC SPHERICAL SHELLS TO
TIME-DEPENDENT AXISYMMETRIC LOADS*

By
P. M. NAGHDI, University of Calijornia, Berkeley, California

AND

W. C. ORTHWEIN, International Business Machines Corp., Oswego, N. Y.

1. Introduction. The quasi-static treatment of problems in the linear theory of
viscoelasticity has received increasing attention in recent years. The method of solution
employed in such problems rests on the use of the Laplace transform (to eliminate the
dependence on time), and the correspondence principle—between the field equations
and boundary conditions in the linear theories of homogeneous and isotropic elasticity
and viscoelasticity—which, in the absence of thermal effects, has been established for
incompressible media by Alfrey [1], and in general form by Lee [2], The extension of
Lee's analogy to problems involving time-dependent temperature fields has been very
recently given by Sternberg [3]. Also, considerable attention has been given to oscillation
and wave propagation problems of viscoelasticity in which the inertia terms have been
included, e.g., [4, 5, 6], and additional references on the subject may be found in a recent
survey by Lee [7],

Closely related to the scope of the present investigation is the recent work on vibra-
tions of thin shallow elastic shells by E. Reissner [8], who, by utilizing the linear differ-
ential equations due to Marguerre [9], has shown that for transverse vibrations of shallow
shells the longitudinal inertia terms (with negligible error) may be omitted; and hence,
the formulation of the elastokinetic problems of shallow shells, as in the case of elasto-
statics, may be reduced to the determination of axial (or transverse) displacement and
an Airy stress function. Subsequently, E. Reissner [10] dealt with transverse vibrations
of axisymmetric shallow elastic spherical shells, and in particular, obtained the solution
for an unlimited shell due to an oscillating point load (varying harmonically in time)
at the apex.

The present paper is concerned with the response of shallow viscoelastic spherical
shells to arbitrary time-dependent axisymmetric loads; the medium is assumed homo-
geneous and isotropic. Although emphasis is placed on unlimited shallow spherical shells,
shallow spherical shell segments are also considered and discussed in Sec. 7. The solutions,
employing the differential equations governing the transverse motion of thin shallow
elastic shells, are obtained with the joint use of the Laplace and the Hankel transforms,
which, by interchanging the order of the inversions, avoids an otherwise intricate task
of contour integration in the complex Laplace transform-plane. Explicit results in integral
form are deduced for viscoelastic shells under instantaneous pulse loading (including
those uniformly distributed about and concentrated at the apex), and are particularized
to the cases of Maxwell and Kelvin solids. The solution for a shallow elastic shell and
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for the case of a flat plate are also given as by-products of the general solution and com-
parison is made with known results [10]. It may be further noted that the transform
technique employed here appears to be useful also in connection with other axisymmetric
problems of stress wave propagation in viscoelastic solids.

2. Preliminary background. With reference to rectangular Cartesian coordinates
xi , the stress-strain law for an isotropic and homogeneous viscoelastic medium may be
written as1

PiWsh = P2(0)e<, ^ ^

= t

where era and e<( are the components of the stress and the strain tensors su and eit
designate the deviatoric components of stress and strain, the operators Pm{6) involving
the constant coefficients C£° (m = 1, 2, 3, 4) are defined by

PM = E Cin)0"; [(£»-> * 0]
(2.2)

dtn '

and t denotes time.
For future reference, we also recall that the Laplace transform with respect to t of

a (suitably restricted) function XJ(x, t) is given by2

U'(x, s) = L{U(x, <);s] = [ e~"U(x, t) dt, (2.3)
Jo

where s is the transform parameter, and that the Hankel transform of order zero of the
function U'(x, s) is defined by3

£/*(£, s)=[ xJ0(&)U'(x, s) dx (2.4)
Jo

provided that (i) the integral /° U'(x, s)dx is absolutely convergent, and (ii) the func-
tion U' is of bounded variation over the region of interest. Furthermore, in connection
with the Hankel transform of dU'(x, s)/dx, we need the property that (iii) xU'(x, s)
vanishes both at x = 0, and as x —» ; this ensures the existence of the inverse transform
of U*. Here it may be noted that the Hankel transform defined by (2.4) formally differs
from that defined in [17]; however, with the transformation V (x, s) = x~xn V (F being
the function corresponding to V in [17]), after multiplying both sides of (2.4) by £1/2
and setting V* = £1/2 U*, the two definitions are brought together.

Since in the theory of shells (and plates) the stress resultants and the stress couples
are defined in terms of components of stress, rather than components of stress deviation,
it is expedient for our present purposes to obtain an alternative form of (2.1). To this

'The Latin indices have, unless otherwise stated, the range of i, j, = 1, 2, 3, and the repeated in-
dices imply the summation convention.

aSee, for example, Churchill [11]; the argument x in U refers to the space variable.
3See, for example, Sneddon [12].
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end, observing that the operators P^'(0) are in general noncommutative [13], we take
the Laplace transform of (2.1) and express <r'u in terms of e,',- by4

«'n = PMPTXsVii - m(s)Pi\s) - P<(s)P-3\s)V» 6{i , (2.5)
<rU = P4(s)P3'1(s)€:i ,

where s,,- is the Kronecker delta.
It follows from the correspondence principle that the field equations and the boundary

conditions governing the original viscoelastic problem are reducible to the field equations
and boundary conditions of an associated problem in the linear theory of elasticity,
with Young's modulus E and Poisson's ratio v of the elastic solid replaced by

fe(s)l = [pa(s)pa(s) + 2Pi(s)P4(s)]~11 3P4(s)P2(s) 1 (2>6)
U«)J l[P:(s)P4(s) - P2(s)P3(s)]J

It is easily verified that the correspondence principle and the results (2.6) are also valid
for any of the various (consistent) theories of thin shells.

We also note that in (2.6) the linear, homogeneous and isotropic elastic medium
may be identified by allowing E(s) —> E and f(s) —> v (corresponding to Pi(s) = P»(s) =
1, P3(s) = 2/x, P4(s) = 3K, n and K being the shear and the bulk moduli of the elastic
solid, respectively). The operators Pm(s), when associated with the Maxwell solid, are

P, = s + r l, P2 = 2ns (2 7a)

and (2.6) becomes
P3 = s, P4 = 3 Ks

^)=s + f(1S+y)r-^> (2.7b)

,(s) =

. , 1 + " -i
3v~ T

s + 1(1 + ^T"1

where r = ij/n is the relaxation time, y being the viscosity. Similarly, for the Kelvin
solid,

p1 = 1, p2 = 2m(1 + rs)

P3 = ts, P4 = 3 Kts
and

(2.8a)

1 H s— TS

1 - 2v
1 Q  TS

M Sv
K,) " , , 1 - 2v '■1 + —3—rs

(2.8b)

where in (2.8b) t denotes the retardation time.

4It should be noted that unlike the operators P~'(s) are commutative.
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3. Differential equations for transverse vibrations of shallow elastic spherical shells.
Let H denote the rise of the shell segment, L the characteristic length (which for spherical
shells may be conveniently taken as the radius of curvature R), h the shell thickness,
p the density, and T the representative wave length. Then, for transverse vibrations
of thin shallow elastic shells, with the stipulation that (H/L)2 « 1, it has been shown
by E. Reissner [8] that the effect of longitudinal inertia may be omitted (with negligible
error) from the differential equations governing the motion of the shell as long as (r/L)
is of order unity5, i.e.,

(f)\L,
and when r is characterized by the following classification

t) = °0) (3-la)

(a) If (= 0(1) or smaller, then

r' " 12(1^-7) <w"' (3'lb)

(b) If (j~)»l, then

'-nb (m
where y~2 = pw2/E, w being the circular frequency.

Thus, with reference to cylindrical polar coordinates (r designating the polar radius)
and with omission of the longitudinal inertia term, the differential equations for the
axisymmetric transverse vibrations of shallow elastic spherical shells are characterized
by [10]

DV2V2w + | V2F = -Ph Jpr + p(r, t)

V2V2F - ~ V2w = 0, (3.2)

and the various stress resultants and stress couples are given by

Nr = ~ dF/dr, Ne = V2F - ^ dF/dr (3.3a)

Mr = — i)j^d2w/dr2 + V'r , Me — — dw/dr + v
djw
dr2

(3.3b)

Q=-Djr(V2w) (3.3c)

where w is the axial displacement, F is the Airy stress function, p is the axial component
of the surface load,

5Actually in [8], Reissner has further concluded that the neglect of longitudinal inertia terms is
justified when (r/L) is of order of unity or smaller, but not when (r/L) » 1.
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Eh3 , „2/ , d2 , s , 1 d , s
D ~ 12(1 -v2)' and V ( } ~ dr2 ( } + r dr ( )'

It is also relevant to recall here that the steady state solution (for axisymmetric
transverse vibrations of shallow elastic spherical shells) given by E. Reissner [10], where
w and F are assumed to have the form

w = W(r) exp (tut), F = /(r) exp (iut), [i = (—1)1/2],

involves Bessel functions (J0 , Ya , I0 , K0) of argument Xr, where

_ (W/2
X4 = 12(1 -„*)(.Rh)2 [■ - (!)• (3.4)

Indeed, since by (3.4) the case of y/R — 1 (corresponding to X = 0) is not admissible,
for the axisymmetric vibrations treated in [10] two sets of solutions of (3.2) associated
with the two frequency ranges R/y ^ 1 exist.

The integration of the second of (3.2), together with the condition of vanishing
circumferential displacement (which, as in the elastostatic solution of shallow spherical
shells [14], demands the vanishing of the coefficient of the logarithmic term) leads to

V2F = + G0(t). (3.5)

If attention is confined to unlimited shallow shells, then since w( <*>, t) = 0 and
V'F( &, t) = 0 (the latter condition, by (3.3a), is due to independent vanishing of
Nr and Ns at r = <»), it follows that in (3.5) G0(t) = 0 and for unlimited shallow shells
the system of differential equations (3.2) reduces to

DV2V2w + ^ V2F = -PhyT + p(r, t)R dt (3.6)

_2 ri hEV F = -JT-W.

Furthermore, for unlimited spherical shells, the remaining boundary conditions
associated with (3.6) are

= vy»,0 = 0, (3.7)

the regularity requirements for oscillating distributed load are specified by

w(0,t), Nr(0, 0, Ne(0, <); finite (3.8a)
or

Mr(0, t), Me(0, (); finite, (3.8b)

and those appropriate for an oscillating point load are given by (3.8a).
4. Unlimited shallow viscoelastic spherical shells. The differential equations and

the boundary conditions (as well as the regularity requirements) appropriate for an
unlimited shallow viscoelastic spherical shell (0 < r < °°), subjected to an arbitrary
time-dependent axisymmetric load, following the application of the Laplace transform,
and with an appeal to the correspondence principle (Sec. 2), are obtained from (3.6),
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(3.7), and (3.8) with the moduli E and v (of the elastic solid) replaced by E(s) and v(s),
respectively. In particular, with zero initial conditions, i.e.,

w(r, 0) = ^ (r, 0) = F(r, 0) = 0, (4.1)

the differential equations of motion in the Laplace transform-plane read

Z>(s)V2VV + | V2F' + Phs2w' = p'

V2F' = ^ w'.K

(4.2)

As the solution of the system of differential equations (4.2) involves Kelvin functions
whose arguments are polynomials in s, thus prohibiting simple inversions, the determi-
nation of w and F will in general require cumbersome contour integration in the com-
plex Laplace transform-plane. To overcome this difficulty, we consider the application
of Hankel transform of order zero to (4.2), and require that w and its derivatives up to
the fourth, and F' and its derivatives up to the first vanish to a suitable order at infinity
such that all integrals employed in the following analysis exist.

Recalling the formula for the derivative of Hankel transform of order zero [12,
p. 62], i.e.,

and by iteration

f (V2w')rJ0(r^ dr = — £V*(£, s) (4.3a)
Jo

[ (V2V2w')rJ0(rg) dr = £V*(£, s), (4.3b)
J 0

then, with the aid of (4.3) and application of the Hankel transform of zero order to
(4.2), we reach

D(s)?w* + s (V2F)* + phsw* = p*K

(V2^* = lj~^ w*. (4.4)

Elimination of (V2F)* from (4.4) results in

w* = D'\s) [£4 + Xo(s)]-y(f, s), (4.5)

where

4 12[1 — j>2(s)] [" 2/ ps2\"| 4 12[1 — v2(s)] 2
~ m2 L + to/J" + h2E(s) 138' (4-6a)

/4 _ (RKf .12[1 - ^2(s)]' ( ,6b)

It is now clear that since the right-hand side of (4.5) involves only polynomials in
| and S, the inversion of w* in s is easily carried out, and its inversion in the Hankel
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transform parameter £ (being a real variable) is also possible. Thus, by first taking the
inverse Laplace transform of (4.5), followed by the inverse Hankel transform (which
is a self-reciprocating transform), we obtain

w{r, t) = [ ZJ0(rS)dt [ L_1{p*(^s); t - f} df, (4.7a)
Jo Jo

where
* = zr'(s)K4 + x&or1. (4.7b)

It remains to determine the function F. However, since F does not necessarily con-
form to the requirements for the validity of its Hankel transform, while Nr and Ne as
given by (3.3a) are independently finite at r = 0 and vanish at r = °°, we proceed
instead to establish V2F and 1/r dF/dr. To this end, we turn to the second of (4.4) and,
with the aid of (4.5), write

(V^* = hm + py. + ^y. (4.8)

Again, taking the inverse Laplace transform of (4.8), followed by the inverse Hankel
transform, we obtain

V2F(r, 0 = | J" $JM) dt £ s); ̂ )L~l{E(s)^, s); t - f} gf, (4.9a)

and by integration, since Nr(0, t) = N,(0, t) = § V2jF(0, t),

Nr = } % = p [ xV2F(x, t) dx (4.9b)

which completes the desired solution.
Before closing this section, we record some special types of loading, as well as their

Hankel transforms, which will be of interest presently. For a pulse instantaneously
applied and removed at t = t0 ,

P(r, t) = q(r) 8(t - t0), (4.10)

where the Dirac delta function is defined by

8(t - to) =0, (t * t0)

[ 8(t - <o) dt = 1. (4-11)
J —CO

If, on the other hand, the pulse applied at t = t0 continues to act indefinitely, then it
is only necessary to replace 8(t — t0) in (4.10) with the Heaviside step function Hit — t0),
defined by

(t- to > 0)

H(t - tQ) = (t = to). (4.12)"

0 (t < to)

6The use of the letter H with argument (< — to) for the Heaviside step function should not be confused
with the notation for the shell rise in Sec. 2.
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Among the various forms which the function q(r) may assume, we specifically cite those
associated with (a) uniformly distributed pulse over 0 < r < a (a/R <3C 1), and (b)
point load pulse applied at r = 0, each given respectively by

q(r) = — p0II(a - r), (4.13a)

50) = S(r). (4.13b)

Also, for future reference, the Hankel transforms of q specified by (4.13a) and (4.13b)
are given respectively by [12, p. 88]

and by [15, p. 67]

<?*© = -'Pf-JM), (4.14a)

<?*(£) = (4.14b)

5. The elastic solution as a by-product. Reduction to known results. By allowing
E{$) —> E and v(s) —* v in (4.5) and (4.8), and by taking their inverse transformations,
we deduce the complete solution for the unlimited shallow elastic spherical shell under
arbitrary time-dependent axisymmetric load. In particular, when the load is specified
by (4.10) and (4.13a), then with the aid of (4.14a) and tables of integral transforms
[16, Table 5.2] and [9, p. 323], there follows

dF ( A
~dr

v.fr 0 - [' <»5, (5.1)

[ Jo(r£)Jd£, (5.2)
Jo

ph

V2F(r, t) p0aE
pR

gaoE d
Pit

where

0"l" + "ft1'"'" - w}sin
+ = 1 z • (5-3)

(-;) | [i + mr*
As further specialization of the above solution, consider the case of a flat plate by

letting R —> °° and setting F = 0. Thus, for an infinite elastic circular plate subjected
to a pulse concentrated at the origin (allowing a —> 0 while P = irap„), (5.1) reduces to

P /„;,W2 f- sinl("§) ^ ~ *o)f
W(r' 0 = ~2rph fe) L   T ^ (5'4)

which, with t0 = 0, the notation r0 (E/p)1/2t, and the use of [17, Table 8.2)] becomes

"fr.o-iiMi2(i-""'i] ©fe)}' (5-5s)
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si(r) = — J X dx = —\-k + Si(r), (5.5b)

Si(r) being the sine integral.
In the remainder of this section, we confine attention to shallow elastic spherical

shells subjected to loading of the types

p(r, t) = —p0H(a — r)e"", (5.6a)

p{r,t) = 8(r)e'°', (5.6b)
irr

which vary harmonically in time. For such steady state solutions, it is more convenient
to return to the viscoelastic solution (4.5) in the Laplace-Hankel transform-plane.
Following Lee [6], we replace s by iu in all quantities except in p*(i, s) which is replaced
by7 P*(£), and then take the inverse Hankel transform leading to the (real) steady state
amplitude W(r) for the axial displacement. When p(r, t) is specified by (5.6a), through
the process just described and with the aid of (4.14a), we obtain

fir/ \ . . 7^—1 r JoWJM) ji- fri T\W{r) = —p0a D J^ 4 d£, (5.7)

along with similar expressions for V2/ and df/dr, f(r) being the amplitude of F(r, t)-
Unfortunately, the solution (5.7) does not admit a closed representation; and probably
for this case a more direct approach, involving the use of the elastic solution of the
problem [10] and the Laplace transform, will (from a practical point of view) prove
fruitful.

For the steady state solution due to an oscillating point load specified by (5.6b),
with the aid of (4.14b), W and V2/ are given by

= (5-8a)

V7M = -f W(r). (5.8b)
The integral in (5.8a), with as positive, admits a closed representation [17, Table

8.2]. Hence,

W7(r) = —^ MV) (5.9)

which is in exact agreement with the results given in [10] for

(R/y)2 >1 or co2 > (E/p)/R2

(corresponding to X„ > 0); in (5.9), kei x (together with her x, bei x, and ker x to be
introduced presently) are the Kelvin functions.

On the other hand, if in (5.8) \q < 0, i.e., for (R/y)2 < 1 or co2 < (E/p)/R2, we
introduce the quantity X through

Xo = X4 exp , (5.10)

'Here, this process is equivalent to taking the inverse Laplace transform.
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[where, by (4.6a) with s replaced by io>, X is defined by (3.4)] and also employ the relations
[18]

(5.11a)

(5.11b)

kerz = 11 — iJ^z exp (—i — Y^z exp (^ — i

+ iJ^z exp (i — F0|jZ exp (i

kei z = ^ j—«/0|jZ exp J + iY^z exp (^—i

— J^z exp (i _ iY^z exp (i

whose argument z = x + iy is complex. Thus, for \*0 < 0, substitution of (5.11) and (5.10)
into (5.8) and the use of [15, Table 8.2] lead to expressions whose real parts8, i.e.,

W = Re [A'„(X„r) + | F„(X0r) - i | ./0(X0r)]} , (5.12a)

5 (jff^K0(\0r) - | F„(A0r) + i | J0(A„r) + 2 In (5.12b)/ = Re 4ir Z)X

agree with the corresponding results in [8] for R/y < 1. Here, it may be of interest to
note that with (5.10) and with the use of known relations of the type (see e.g. [18, p. 20])

2Y0(i1/2x) = [bei x + i her x] H— [ — kerx + ikeix],
IT

Eq. (5.12) for the range R/y > 1 may be reduced to the form (5.9)9.
6. Solutions for special viscoelastic materials. In this section, for simplicity's sake

we limit ourselves to incompressible media (v = §), in which case (2.6) and (4.6) become

E(s) = lP2(s)/V(s), (6.1)

X°(s) = ^ [i3 + £§)] '

and deduce explicitly solutions for the viscoelastic Maxwell and Kelvin solids.
(a) For the incompressible Maxwell solid with the aid of (2.7b), (6.1) reduces to

E'
(6.2)

xi(«) 9p r 21 —i I JLI
= Wls +ST +-pR2}'

As tables for the inverse transforms of the functions involved here are available, we turn
to (4.5) and write

8It may be recalled that oil account of the assumed form of the exponential time-dependence of
the solution, the various quantities are in general complex, and their real parts give the desired results.

9In this connection, compare with [10, Eqs. (42) to (45)].
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W*(Z, s) = ^39 S + t 1  p*(g, s)
Eh3 s

£ + I + sr9p P 2 i —1 I E ~j
^La+Sr+^J (6,a)

_ P*(£> s) S + r 1 
oh «[(« + (2r)-y + (/S2 - (2t)~2)] '

where

'" {©(i)'11 + «'*)}"*'"'• <6-3b>

Then, for instantaneous pulse specified by (4.10), after recalling the Laplace transform
of the 5-function [11, p. 27], as well as its inverse transform [11, p. 323], and using [16,
Table 5.2], we take the inverse (Laplace followed by Hankel) transforms of (6.3a) to
obtain

w(r, t) = ^ Jq [£g*(£yo(r£)]^r jl - exp (~l 2 r-Ij

•^cos (V - (t - to) J (6.4)

[("' " J?)'"' " «]>}■«'
V* 4t /

In a similar manner,

V2F(r, t)=~ f~ lZq*(&Ja(rt)] (6.5)
/ f - <q _A

2'v^yv«]exp
X sin

(«-*)■'

• #

and dF/dr, as in Sec. 4, is obtained by integration.
(b) For the incompressible Kelvin solid with the aid of (2.8b), (6.1) reads as

E(s) = (1 + rs)E,

,_ 9p_s2 + \E/(PR*)](l + r«) (6'6)
oW Eh2 (1 + rs)

and again, to avoid the convolution integral in (4.7) and (4.9), we return to (4.5) and
(4.8) and obtain

w(r, t) = Jo ltq*(£)J,M)] exp [--y (< - <o)J

sin

- (f/]
1/2

(i - M
4, (6'7»
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V2F(r, t) = ~ fo exp [■

(' " (I)'
-(f)"

■f (« - «
1/2

(t-to)) (6.8)

1
+

- (f). ; sin (/(l -(f)
1/2

(t - to) fdl

Since the integrals in the solutions (6.4) and (6.5), as well as (6.7) and (6.8), converge
rapidly, the numerical evaluation of the results is feasible. In addition, it may be noted
that as t —>■ 00, the second term in the integrand of (6.4) diminishes exponentially while
the first remains finite. Hence, under instantaneous loading, the shell medium for the
Maxwell solid will assume a permanent deformation- no such effect is present in the
solution (6.7) for the Kelvin solid. That this observation is not unexpected becomes
evident by merely recalling the absence and presence of a restoring force in the one-
dimensional Maxwell and Kelvin models, respectively. On the other hand, for an oscil-
latory load which itself (unlike an instantaneous load) supplies the restoring force, no
permanent deformation takes place in the Maxwell medium.

7. Shallow viscoelastic shell segments. The solutions for shallow viscoelastic
spherical shell segments, in principle, may be obtained in a manner similar to those for
unlimited shallow shells (Sec. 4); the chief difference, however, is the use of finite Hankel
transform (in place of Hankel transform) together with some manipulations necessary
to accommodate the edge boundary conditions of the shell segment. Although the
method of solution (to be discussed presently) permits the treatment of shell segments
with various boundary conditions, such as those considered in [14, Sec. 11], for simplicity's
sake we confine attention to the case of shallow spherical shell segments (0 < r < r0)
supported at r = r0 by means of a ring which is restrained against rotation and non-
resistant to axial force. Here, the regularity requirements at r = 0 are identical with
(3.8), and the boundary conditions are given by

w(r0 , I) = Nr(r0 , t) = Mr(r0 , t) = 0. (7.1)

Before proceeding further, we recall that the finite Hankel transform of a (suitably
restricted) function U'(r, s), as well as its inverse transform in the interval 0 < r < r0
are defined, respectively, by [12, p. 83]

U*(£i,s)= f rJ0(r£,)U'(r, s) dr (7.2a)
Jo

and

(7.2b)

where are the roots of the transcendental equation

Mr&) = 0 (7.2c)
and in (7.2b), the summation is intended over all positive roots of (7.2c).
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After introducing the new variables v and G

r2 — rl
■ —T~Vo '

G = V2f - Go , G0 = V2F(r0 , t),

r2 — rlv = w i-2"° ' v° = ^2w(r<> > 0> (j 3)

defined to satisfy

v(r0 , t) = V2v(r0 , t) = G(r0 , t) =0, (7.4)

we return to the system of differential equations defined by the first of (3.2) and (3.5).
Then, following the application of Laplace transform (with zero initial conditions) and
with an appeal to the correspondence principle, we deduce

i>(s)V W + | (&" + G'o) = p'(r, s) - Phs2[v' ,

hE(s)
6 =~ir v' + T ~

(7.5)

From the finite Hankel transform of (7.5), there eventually follows

, s) = [£ + X&)H;J Xo(s)./1(r^,)^(s)

r0 J>(r<£,) ,,,,, p*(ti , s)
R D(s) j + Z>(s)

<?*& ,«) = ̂  st +

(7.6a)

(7.6b)
r0 J,(r„£,) p*(£, , s)

+ "~o(5r
The two above equations may be put in the form

t>*(£,- , s) = v!>f$(£i , s) - Go/*(k , s) + »*(£< , s), (7.7a)

<?*({« , s) = »^(t4 , s) - <?&*,({, , s) + Gt(f, , s), (7.7b)

where the functions /*,/*, g* , g% , v* and G* are defined by direct comparison with
(7.6). It may be noted here that, except for v*t and G*, , all functions involved in (7.7)
are polynomials in the Laplace parameter s.

In order to eliminate the functions v'0 and G'n, we take the inverse Hankel transform
of (7.7) and obtain

v'(r, s) = v'0j[{r, s) - G!Ji(r, s) + v{(r, s), (7.8)

G'(r,s) = v'0g[{r, s) - G'0g'2(r,s) + G[(r,s), (7.8b)

and also by the second of (7.3),

r OF
dr-(:r,s) = Go f t?[1 - gZ(v,s)]dri + v'0 f vg'iv, s) d-q + f ijGl(v,s)dv. (7.8c)

Jo Jo Jo
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In view of the functional form of Mr in (3.3), we next introduce the operator

A-fU-f", (7.9)drrdr

and with the aid of (7.3), by virtue of the last two of the boundary conditions (7.1)
when applied to (7.8), determine v'0 and G'0 as functions of f[, f2, g[, g'2, v[, and G[ , i.e.,

i^jl + [A/2'(r„ ,s)][A/1'(r0 , s)]~1 ^ vg[ drj j^ 7,(1 - g'2) rfrjj (7.10a)

= [A//(r0 , s)]_1-^At?K»*o , s) - Ai'2(r0 , s) £ t]G[ dr, j ^ r;(l - g'2) rfrjj

and

G'0 = - J v(l — ffO di)J jwj r]g[ dr) + vGi d?)j- (7.10b)

Next, substituting (7.10) into (7.8) and taking the inverse Laplace transform followed
by inverse Hankel transform, we obtain

v(r,t) = | Z {L-'Mm, ,s);t]
' 0 t

- L_Wt(fc ,s);t] + L->*(£,. ,s);t]\ ,
(7.11)

G(r, f)=il {L-l[v^ ,s);t]
' 0 t

(7.12)
- L~l[G'og%(Zi , s); t] + L~l[Gt(f, ,s);t]} ,

which, together with (7.3) and (7.10), formally completes the solution sought.
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