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ON THE STEADY-STATE THERMOELASTIC PROBLEM FOR THE
HALF-SPACE AND THE THICK PLATE*

BY

I. N. SNEDDON AND F. J. LOCKETT
The Department o/ Mathematics, The University 0/ Glasgow

1. Introduction. In a recent paper, Sternberg and McDowell [1] discussed the
problem of determining the steady-state thermal stresses and displacements in a semi-
infinite elastic medium bounded by a plane. In particular they succeeded in proving
that the stress field induced by an arbitrary distribution of surface temperatures is
plane and parallel to the boundary. The problem was treated by the method of the
Green's function.

This paper deals with the determination of the steady-state thermal stresses in
both a semi-infinite elastic medium and a thick elastic plate. As in the analysis of Stern-
berg and McDowell, the problem is treated as one in the classical theory of elasticity.
The method of solution employed is that of double Fourier transforms. A general solution,
corresponding to an arbitrary temperature field, is obtained in the form of double
integrals and it is confirmed that the stress field is plane and parallel to the boundary
of the medium. The particular solution corresponding to axially symmetrical temper-
ature fields is deduced and a solution found of the problem in which the surface
temperature is uniform over a circular region of exposure and is zero outside. In this
special case an expression is given for the difference, | <r„ — <t9 |, of the principal stresses
in terms of tabulated integrals, and the three-dimensional analogue of the isochromatic
lines constructed (see Fig. 2).

The corresponding analysis of the steady-state displacements and stresses produced
by arbitrary distributions of temperature on the surfaces of a thick plate is then given.
It is shown that Sternberg and McDowell's result (that the stress field due to arbitrary
surface temperatures is plane and parallel to the boundary) holds for a thick plate as
well as for a semi-infinite solid. This result has been derived by McDowell [2], using
a method similar to that of the paper [1], and by Muki [3], using a method combining
the theory of Fourier series and that of Hankel transforms of integral order. The method
developed here is just as simple as these for deriving the general result, and appears
to be much more suitable for the discussion of special problems. To illustrate the use
of the method, the isochromatic surfaces within a thick plate are constructed for a
special distribution of surface temperatures, (see Fig. 3).

2. The basic thermoelastic equations of equilibrium. We consider an elastic body
whose boundaries are parallel to the plane z = 0, and in which is established a temper-
ature field T + d{x, y, z), where T is the temperature of the solid in a state of zero stress
and strain. We assume that there are no body forces within the solid and that its surfaces
are free from traction. If we take a typical length I as our unit of length, the reference
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temperature T as the unit of temperature, and the rigidity modulus n as unit of stress,
we find [4] that the equations of thermoelastic equilibrium take the dimensionless forms

V2u + (j82 — 1) grad A = b grad 6, (1)

where u denotes the displacement vector, A = div u is the dilatation, /32 = 2(1 — v)/
(1 — 2v) (v being Poisson's ratio), and, in terms of the coefficient of linear expansion
of the solid,

b = 2(1 + v)aT/(l — 2v).

The variation of 6 throughout the solid is determined by Laplace's equation

V20 = 0, (2)

(in the absence of heat sources), and, in this system of units, the relation between the
stress tensor r,-,- and the displacement vector u = (u, , u2 , u3) is given by the Duhamel-
Neumann equation

th = P2 - 2) A - bd] Sa + («;.,- + «(,,■).

In this last equation denotes du,/dXj with the convention that (.t, , ,r2 , x3) =
(x, y, z).

To solve the equations of thermoelasticity in this form we introduce the double
Fourier transform

/*(£, V, z) = ^ J J f(x, V, z) exp [i(& + ijy)] dx dy, (3)

of each physical quantity f(x, y, z) occurring in the problem. The vector equation (1)
is then easily seen to be equivalent to the set of three simultaneous ordinary differential
equations

{D2 — — tj2)m* — (/32 — 1)£tju* — (/32 — l)if Dw* = —ib£d*,

— (/32 — 1 )£??«* + (D2 — — P2y)v* — ifi2 — Dw* — — ibt]6*,

- (/32 - l)z| Du* - (j82 - l)iy Dv* + (/32 D2 - ? - v2)w* = b Dd*,

and the transform of Eq. (2) is

CD2 - f)e* = o,
where we have written f = j (f2 + v)i/2 I and used D to denote the differential operator
d/dz. It can be shown that the solution of this set of simultaneous ordinary differential
equations may be put in the form

6* = Ee~s* + E'eu, ^

u* = (4, + P%z)e~{* + (Ai + PW,
v* = {A2 + Pi)z)e~u + (A'2 + P't]z)eu,

(5)
w* = (A, - iP&e'" + (A', - iP'$z)eu,

where the constants A, , A2 , A3 , A [ , A'2 , A'3 , E, E' are arbitrary and P, P' are given
in terms of them by the equations

P = [ibE - (p2 - l)(Ui + r,A2 - iU3)]r\P2 + 1)~\ (6)

P' = [ibE' - (02 - l)(Mf + nAi - tM.Oir'CS1 + I)"1. (7)



1960] STEADY-STATE THERMOELASTIC PROBLEM 147

The expressions given by Eqs. (4) and (5) satisfy the basic equations of thermo-
elastic equilibrium in the transformed form. To obtain the solution of the original
equations we make use of the Fourier inversion theorem.

j(x, y, z) = [ [ /*(!, v, z) exp [~i(& + vy)] d£ dt],
jjTC J —oo J - co

to obtain the expression for a physical quantity in terms of its Fourier transform. The
solutions (4) and (5) are, of course, suitable only for the discussion of problems in which
the solid region under consideration is bounded by planes normal to the 2-axis.

3. Solution for the half-space. If we assume that the components of the displacement
vector, and the temperature each tend to zero as z —» oof the solution for the half-space
z > 0 is

u* = (Aj + t-Pz)e~r% v* = (A2 + t]Pz)e'l:', w* = (A3 — i^Pz)e~tl, (8)

where Ax , A2 , A3 denote arbitrary constants,

e* = Ee'1', (9)

and P is given by Eq. (6). The Fourier transforms of the stress components rxl , r„2 , <r,
are given then by the equations

r* = (-fAi - ttPz + £P ~ iU3 ~ KPzV',
r* = (-?A2 - vtPz + vP ~ «?A3 - ■q$Pz)e~t',

a* = - 2)($Ai + ?Pz + VA2 + v2Pz) + |82(-fA3 + i?Pz - t'fP) - bE]e~".

If, then, we impose the boundary conditions

6 = <t>{x, y), Txt - tV! = <jz = 0,

on the plane z = 0, we find that

E = <£*(£, rj), (10)

where </>*(£, 17) denotes the double Fourier transform of 4>(x, y), and that

(A, , A2 , A,) = iH*[2(/32 - l)ra]-1(€, V, if).

For these values of the arbitrary constants Aj , A2 , A3 it is readily seen, from Eq. (6),
that P = 0 so that the solution (8) can be written in the form

u* = ib<t>*e~l*[2(p2 - l)rT'(£> V, «f). (11)

For this solution it is easily shown that
♦ _ _* _ * = Q

1XZ * vz uz

for all positive values of z, showing that the stress field is plane and parallel to the
boundary in agreement with the result of Sternberg and McDowell.

If we invert Eq. (11) by the Fourier inversion theorem, we find that the displacement
vector is given by the equation

u = =~I) II II ir>' ~f) eXP + VV) ~ f2] ̂ + (12)
47r(/3 — 1)
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In the case in which the prescribed surface temperature <t>(x, y) is axially symmetrical,
so that <!>(x, y) = <t>(p), where p = (x2 + y2)1/2, we find that

<£*(£, v) = (2ir)'1 f d& f p<t>(p) exp [i£p cos ($ — x)] dp,
Jo Jo

where we have written f f cos x, V — t sin x, % = p cos y = p sin d. We there-
fore find that, in this case, </>*(£, tj) = <£*(f), where denotes the zero-order Hankel
transform of the function <j>(p) defined by the equation

= f pJa(p£)<t>(p) dp.
Jo

Denoting the component of the vector u in the p-direction by u„ we find that

wP = u cos # + v sin t?

= f>[47r(|82 — l)]"1 [ tf>*(f)e~f' d£ [ i cos (i? — x) exp [ — i£p cos (t? — x)] (13)
Jo Jo

= |b(/3s ~ I)"' [ (p?)e~C' dt■
Jo
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Fig. 1. Variation of the normal component of the displacement vector in planes parallel to the bound-
ary of a semi-infinite solid.
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Also the component in the z-direction is given by

w = -hb{? - l)"1 f" Jo(Pt)e-" df. (14)
Jo

As a special case of the use of these formulae, we consider the problem which is
considered in some detail by Sternberg and McDowell, namely that in which

«,)->•' 0 <' <1;
lo, P > 1,

in which case #*(f) = <t>0Ji(f)/f and, in the notation of [5] we have

u = J64»„(/32 - 1)"V(1, 1; -1), w = -i60„O32 - 1)"V(1, 0; -1), (15)
where

jqi, V, x) = [ j,(r)jxpr)e~tzr" dr. (ie)
Jo

The integrals J(l, 1; — 1) and J( 1, 0; — 1) have been tabulated for ranges of values
of p and z in Tables 9, 10 and 11 on pp. 545-546 of [5], so that it is an easy matter to
calculate the components of the displacement vector at any point. For example, Fig. 1
shows the variation of the normal component, w, of the displacement in planes parallel
to the boundary.

Using the formulae developed in [5], it is a simple matter to show that the equations
(15) are in agreement with the expressions given by Sternberg and McDowell.

It is of more direct interest to calculate the difference of the principal stresses. In
our system of units, we have

  _ c\(&UP _

" ~ \dp o)>\dp
so that, in the general case

a, - a» = - i)-1 f r<t>*(r)[J0(pr) - 2j1(Pr)/(Pr)]e-1, dr, (17)
Jo

0 I 2 P

Fig. 2. Section by the plane d = constant of the surface | ap — o$ | = constant, in a semi-infinite solid.
The numbers refer to values of (J32 — l)(o-^ — <rp)/6<#>o.
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and, in the case in which (<t>*(£) =

a, - P» = H0(/J2 - 1)_,[J(1, 0; 0) - 2J(1, 1; — l)/p]. (18)

The values of this stress difference at a grid of points in the zp-plane can be calculated
easily from Tables 6 and 11 of [5], and it is then a simple matter to draw out the lines
joining points with the same value of this stress difference. The resulting set of curves
will be curves obtained by cutting surfaces of equal maximum shearing stress by a
plane & = constant, and will correspond to the isochromatic lines of two-dimensional
elasticity. These contours are shown in Fig. 2 for the simple problem we have considered
here.

4. Solution for a thick plate. The general solutions (5) can be written in a form
which is more suitable to plate problems, in which the elastic solid is bounded by the
planes z = ± d. The displacements due to the temperature distribution whose trans-
form is

0* = E cosh (fz) + E' sinh (fz) (19)

are given by the equations

u* = (A! + P'&) cosh (fz) + (A[ + P£z) sinh (fz),

V* = (A2 + P't]z) cosh (fz) + (A£ + Prjz) sinh (fz), (20)

w* = 043 + iP'fr) sinh (fz) + (A£ + iP$z) cosh (fz),
where

P' = if - + vA'2 + ium32 + l)f - + l)f,

P = (P2 ~ DP. + vA2 + iUM? + Df - ibE/(? + Of.
(21)

The components tX2 , tvi , <jz of the stress tensor associated with this displacement field
are given by the equations

r* = (f At - i£A3 + P£) sinh (fz) + 2Ptfz cosh (fz) + ({Ai — i£A'3 + P'Q cosh (fz)

+ 2P'tfz sinh (fz),

r* = (£A2 — ir)Aa + Pri) sinh (fz) + 2Ptfz cosh (fz)

+ (Ma — ivAz + P'n) cosh (fz) + 2P'ri$z sinh (fz).

o* = —i(i32 — 2)[(A^ + A2ij) cosh (fz) + Pf2z sinh (fz)] — bE cosh (fz)

+ 62A:i£ cosh (fz) + cosh (fz) + tfifzP sinh (fz)

— — 2)[(yl1'| + /12'^) sinh (fz) + P'fz cosh (fz)] — bE' sinh (fz)

+ f32A£f sinh (fz) + 82i£P' sinh (fz) + fiHfzP' cosh (fz). (22)

Since the right-hand sides of these equations consist of the sum of an odd and an even
part, the boundary conditions <r2 = txi = r,JZ = 0, on z = ± d, lead to three pairs of
equations of the type a-\-b = 0, a — b = 0, which imply that a = 0, b = 0. In this
way we get the three equations



1960] STEADY-STATE THERMOELASTIC PROBLEM 151

(fylj — i£A3 + P£) sinh fd + 2Ptfd cosh fd = 0,
(f A2 — tvA3 + Pv) sinh fci + 2Prjfd cosh fd = 0,

— i(J}2 — 2)[(A^ + A2r]) cosh fd + -Pf2rfsinh fd] — bE cosh fd + A3t; cosh fd

+ jS2ifP cosh fd + /32tf2fiP sinh fd = 0,

from which, with the help of the second of equations (21), we find that

(.A, , A, , 43) = hibErW - 1 ru u, -if),
and, in turn from these, that P = 0.

We get a similar set of equations with the A,- replaced by A' and E replaced by E'.
In this way we obtain the expressions

u* = !ifr£f~2(/S2 — 1 )~\E cosh £z + E' sinh fz),

v* = %ibri£~Xf}2 — l)~\E cosh fz + E' sinh fz), (23)

w* = %br\P2 ~ l)~\Esmh fz -f E' cosh fz),

for the Fourier transforms of the components of the displacement vector. Substituting
the values for the constants into the equations (22), we find that t*z = r* = <rf = 0,
— d < z < d, so that the Sternberg-McDowell result that the stress field induced by an
arbitrary distribution of surface temperature is plane and parallel to the boundary holds
for a thick plate as well as for a semi-infinite solid.

As in the case of the half-space we can easily derive the solution in the case in which
the temperature field is axially symmetrical. To illustrate the procedure, we shall con-
sider the simple situation in which

6 = 0(p), on z = +d, 9 = 0 on z = —d. (24)

For this distribution of surface temperature, we find that

0 = [ &*(?) sinh [f(z + d)] cosech (2fd)J0(£p) df, (25)
J 0

= |&(|32 - 1)_1 [ 4>*(f) sinh [f(z + d)] cosech (2fd)J,(fp) tff, (26)
Jo

w = J6(/32 — l)"1 [ 0*(f) cosh [f(z + d)] cosech (2fd)J0(fp) df. (27)
J 0

Our unit of length (I) is, as yet, unspecified. If we now take I = d, so that all lengths
are measured as ratios of half the thickness of the plate, we find that Eqs. (25) to (27)
assume the simpler forms

0 = [ ft>*(f) sinh [f(z -f 1)] cosech (2f) </0(fp) d£, (25a)
Jo

u, = §6(/f - l)"1 [ <t>*{f) sinh [f(z + 1)] cosech (2f)./,(fp) rff, (25b)
Jo

w = ib(/32 — 1)_1 f 0*(f) cosh [f(z + 1)] cosech (2f)J0(fp) df. (27a)
Jo
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For any given distribution of temperature on the upper surface of the plate, we can
calculate the zero-order Hankel transform $*(f) of the temperature 4>(p), and, inserting
this transform in Eqs. (25a) to (27a), calculate the temperature field and the displace-
ment field within the plate. In the general case, the evaluation of these integrals would
be a pretty complicated process, because of the occurrence of the factor cosech (2f)
in the integrand. By suitably choosing the function 4>(p) we can, however, obtain
integrals which can be easily evaluated, and obtain the solution of a representative
problem.

For example, if we take the distribution of temperature on the upper surface of the
plate to be given by the function

<Kp) = P2 - 4)20„/8fc]{(fc - 2)[p2 + (fc - 2)T3/2 ~(k + 2) [p2 + (k + 2)TV2},

(fc > 2), (28)

then the temperature at the point z = d, p — 0, or, in our system of units, z = 1, p = 0,
is 60 , and the zero-order Hankel transform is

<£*(p) = [HA;2 - 4:)2d0/k]e-H sinh (2f), (fc > 2). (29)

If, now, we substitute the expression (29) into Eq. (25a) and evaluate the simple integrals
so obtained, we find that the temperature field is given by the equation

6 = [(fc2 - 4)20o/8fc]{(fc - 1 - z)[p2 + (fc - 1 - z)T3/2

- (fc +1 +z)[p2 + (fc + 1 +z)T3/2}. (30)

Fig. 3. Section by a plane t? = constant of the surfaces \ op — 0$ \ = constant in a thick plate. The num-
bers refer to the values of 8k(fP — l)(<rj — — 4)2.
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Similarly, if we make the same substitution in Eq. (26a), we find that the radial com-
ponent of the displacement vector is determined by the equation

up = (0/p){(* + 1 + z)[p2 + (k + 1 + z)2r1/2

-(*— 1 -*)[p2 + (A;- 1 - z)2]"1/2},

with

0 = (fc2 - 4)260o/[16/c(/32 - 1)].

From Eq. (31) we in turn deduce that the difference of the principal stresses is

er, - <r„ = 20{(fc - 1 - z)[p2 + (k - 1 - z)2]"3'2

- (k + 1 + z)[p2 + (k + 1 + z)2]~3/2

+ 2(k - 1 - z)p-2[p2 + (Jfc - 1 - zf]-in (32)

-2(k + l+ z)p~2[p2 + (k + 1 + z) T1/2}.

In a similar way, we find from Eq. (27a) that

w = 0{ [P2 + (A: - 1 - 2)T1/2 + [P2 + (k + 1 + z)T,/2}. (33)

Figure 3 shows the surface distribution of temperature in the case k = 3, together
with the sections (by a plane & = constant) of the isochromatic surfaces | <rp — <ra \ =
constant. If we had chosen a higher value of the parameter k we should have obtained a
surface temperature distribution which was less highly concentrated in the neighbourhood
of the point p = 0; on the other hand, if we had chosen a smaller value of k, such as
k = 2.1, the curve would have been concentrated into a small band surrounding the
origin.
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