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THE KRON METHOD OF TEARING AND THE DUAL
METHOD OF IDENTIFICATION*

BY

A. I. WEINZWEIG
University of California, Berkeley

1. Introduction. Over the past several years, Gabriel Kron has published a series
of papers expounding his method of solving network problems by tearing the network
into smaller components, solving the problem on each component, then interconnecting
the solutions to obtain a solution to the original problem [3, 4, 5, 6, 7]. We wish to present
a precise mathematical formulation of this procedure. This not only establishes the
validity of the method but simplifies and extends it, and moreover, leads to a dual
method we call the method of identification.

We first formulate a general network problem and establish a necessary and sufficient
condition for the existence of a unique solution. This has independent interest for it
simplifies and extends the Kron-LeCorbeiller mixed method of solving network problems
[2, 8]. Following Weyl and Eckmann [1] an electrical network is considered as a 1-
dimensional cell complex and the problem formulated in terms of the chains and cochains
of this complex. The solution of the problem is essentially effected by inverting a certain
matrix, the matrix of the solution. The method of tearing (identification) transfers the
problem to a second network obtained by tearing (making identifications in) the original
network. There the solution matrix is inverted by inverting two matrices, the com-
ponent matrix and the connection matrix ("interconnecting the solutions"). Although
the rank of the component matrix is greater than that of the solution matrix, it is strongly
diagonal and can be inverted by inverting each of the diagonal submatrices ("solving
the problem on each component"). This is actually a special application of a more
general procedure developed in Sec. 8 whereby the solution matrix is inverted by invert-
ing two other matrices, the first of rank greater and the second of rank less than the
solution matrix. If the inverse of the first is known or for some reason more easily com-
putable (as in the case of tearing and identification) then this leads to a simpler solution.
This also furthers Kron's goal of "storing solutions".

For a detailed discussion of the history of the network problem the reader is referred
to Roth [10, 12], For an evaluation of Kron's method of tearing we again refer to Roth
[12] in addition to the papers of Kron.

2. The network equations. An electrical network K can be considered as a 1-di-
mensional cell complex. K is assumed to have lumped design constants with no im-
pedanceless or admittanceless branches. The ^-dimensional chains of K with coefficients
in the field of complex numbers Ck(K) is then a vector space and the fc-cochains Ck(K)
with the same coefficients is the dual space. The boundary operator 3 is a linear trans-
formation with dual the coboundary operator S. Orienting K, the positively oriented
/c-cells can be regarded both as elements of Ck(K) and Ck(K) and as such define dual
primitive bases.
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The current flowing in each branch in the direction of orientation defines a 1-chain
i of K. In the same way, the emf in each branch, the voltage drop across the passive
coil in each branch and the potential difference across each branch define 1-cochains e
V and E respectively. To complete the picture, the current flowing out of each node
or vertex and the potential of each vertex define respectively a 0-chain I and a 0-cochain
P. These quantities are all illustrated on a representative branch ab oriented from a
to b (Fig. 1). Clearly V = E + e.
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Fig. 1.

The impedance matrix [8, p. 2] Z = [Zitj] and the admittance matrix F = [F* '] represent,
in terms of the primitive bases, linear transformations f: C\(K) —♦ C'(K) and jC\K) —>
Ci(K) respectively, where under the usual conditions f_1 = j?. Kirkhoff's current and
voltage laws are expressed by di = I, SP = E and Ohm's law by t(i) = V or ??(F) = i.
These together with F = E + e constitute the network equations.

3. Canonical decompositions. Let Ax be any subspace of the vector space A. There
is a (not unique) complement A 2 of A j in A such that A = At + is a direct sum
decomposition. This decomposition induces the dual decomposition of the dual space
A* = A\ + A% , where A% (.4s?), the annihilator in A* of AX(A2) may be regarded as
the dual space of A^Ai). We denote by <r(Ai): A, —> A the inclusion of A, in A and
7t(^4i): A —> Ai the projection of A onto Ax . Then cr^)*: A* —> .4^ is the projection of
A* onto A*t , that is <r(^i)* = ^(^4^).

The linear transformation £: A —» ^4* is said to be inherently non-singular if
7r(^1)?°"(^1) is non-singular for every subspace Ai of A. This implies that J is itself
non-singular and that £-1 is also inherently non-singular where we identify A and A**
under the usual canonical isomorphism.

Let Z^K) and B0(K) be the null space and image space of d. Any decompositions
Ci(K) = Z,(K) + Ri(K) or C0(K) = D0{K) 4- B0(K) are said to be canonical. In this
case, the restriction of d to Ri(K) defines an isomorphism of R\{K) onto B0(K). Observe
that Z,{K) and B0(K) are canonical. If C\K) = D\K) 4- B\K) and C°(K) = Z\K) 4-
R°(K) are the corresponding dual decompositions then Z°(K) and Bl(K) are precisely
the null space and image space of 8.

4. The network problem. The data for a general network problem consists of
(a) a network K; (b) decompositions C\ (K) = C\ 4- C2 , C0(K) = D1 + D2 consistent
with d, that is dC,- C , i — 1, 2; (c) i21 C2, e C\ , h t A , P2 t D% where Cl{K) =
C* 4- C* , C°(K) = D*! 4" -D* are dual to those given above; (d) a linear transformation
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f: C\(K) —» C'(K) (the impedance form) or rj: C\K) —> C\(K) (the admittance form).
A solution to the network problem consists of i, I, E, e, P satisfying the network equa-
tions di = I, SP = E, i)(E + e) = i or f (i) = E + e, such that ir(C2)i = i2 , t(C*x) e =
Ci , ir(Di)/= 12, x(Df)P = P2.

Observe that f or tj are dependent only on the design constants of the network and
not on the network itself. Thus, f or 77 will be the same for any network made up of the
same coils.

Theorem. A necessary and sufficient condition for the existence of a unique solution
to any network problem is that f and hence 77 = f_1 be inherently non-singular.

Proof. It follows from the consistency of the given decompositions with d that we
can find decompositions CX(K) = ZXI + RX1 + ZX2 + Rx2 , C0(K) = D01 + Box +
D02 4- B02 such that C, = Zu + Ru , Dt = D0i + Boi , i = 1, 2 and CX(K) = (.Z,t +
Z12) + (Ru + R12), C„(K) = (D01 + D02) + (B0i + B02) are canonical decompositions.
Let C\K) = Dn -(- Bu + D12 + B12 and C\K) = Z01 + R01 + Z,02 + R02 be the corre-
sponding dual decompositions. In terms of these decompositions the pertinent chains
and cochains have representations as i = ji + + ;2 + J2 , I = Ii -\- I2 , P = Pt +
P2 , E = Et + E2 and e = e„ + e12 + e21 + e22 , where i2 = j2 + J2 ,
Ij e Boi, Ef c Bu, Pj e Z>,- , j = 1, 2, ex = en + e12 and E2 = SP2 . Then I2 = di2 and
since the restriction of d to Rn + Rl2 = Ri (K) is an isomorphism of R, (K) onto B0(K) =
Boi + B02 , Ji = d lI — J2 •

Setting Aj = Zn , A2 = Rn + 4- R12 yields a decomposition C\(K) = .4, + A2
wherein the component of i in A2, namely i2 + J1 and the component eu of V in A*k =
Du are known. This is called the solution decomposition. The network problem is solved
once either i or V is known for then f(i) = V or V = 1i(i) gives the other
and e = 7t(C%)V — E2 + ex , E = E2 + x(C^)F — ex , P = S~\E) and I = di is a
solution. Hence the problem reduces to determining jx or V2 = V — en . In the ad-
mittance form V2 = [ir(A2)j]<T(A*2)]~1 («/, + i2 — Tr(A2)r)(eu)) and in the admittance
form jx = [^(ilt)^^!)]-1 (en — + J1)). The transformations i}{A2) =
ir(A2)ria(A%), f(A,) = x(4^)fo'(AI), the solution transformations are non-singular since
f and hence i? are inherently non-singular.

The uniqueness follows readily, for any other solution i', E', I', P', e' can be repre-
sented in terms of the decompositions above as i' = j{ + J[ + j2 -f J2 , e' = en +
ei2 -f" e21 e22 , E = E[ + E'2 , P = P[ + P2 , I = Ix + I'2 whence /2 = dJ2 = I2 ,
J[ = (5_1(/) — J2 = J1 , etc. We remark that P is uniquely determined only to within
a constant value on each connected component of K. Knowing the potential of one
vertex of each component, say it is grounded, P can be uniquely determined.

To establish the necessity of the condition, let C\ be any subspace of C, (K) and
ii t Cx such that x(C'^)f<r(C1)z1 = 0. Passing to a new network K' if necessary, Cx can
be taken as a subspace of ZX(K). Such a network can always be obtained by identifying
vertices in K; (if all the vertices are identified, then ZX(K1) = C\(K')). Then let RX(K)
be a complement of ZX(K) in CX(K) and Zxx a complement of Cx in ZX(K). Set C2 = Zxx +
RX(K). Then C\(K) = Cx 4- C2 , C0(K) = D0(K) + B0(K) are decompositions con-
sistent with d and together with i2 = 0, ex = 0, Ix = 0, P2 = 0 and f, define a network
problem with solution i = 0, e = E — 0, P = 0, I = 0. By the unicity of the solution
it follows that ix = 0 so that w(C*x)^a(Cx) is non-singular and f is inherently non-singular.

The solution outlined in the proof above is actually a generalization and simplifi-
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cation of the Kron-LeCorbeiller orthogonal or mixed method [2, 8]. Roth [10] con-
sidered a special case of the network problem, where the solution decomposition is
canonical and established a necessary condition for the existence of a unique solution.
In a subsequent paper [12] he established a necessary and sufficient condition, namely
that f(i) i — 0 only if i = 0. If f satisfies this condition then f is said to be ohmic. Actually,
f is ohmic if and only if f is inherently non-singular. Let C, be any subspace of( C, K)
and i t Ci . Then o~(C,)i = 0 only if £(i)i = 0 for the annihilator of C\ can be
taken as the complement of C\ in C\K). Hence if f is ohmic, i = 0 and f is inherently
non-singular conversely, let f be inherently non-singular and 0 C, (K). Then taking
Ci as the subspace of Ci{K) generated by i, it follows from the fact that o-(C1)*fo-(C1)z ̂  0
that £{i)i 5^ 0 and f is ohmic.

5. A more general formulation. The network problem can be formulated more
generally. Let X and F be two vector spaces, £: X —* Y a linear transformation. Then
the roles of C\ (K), C0(K) and d in the network problem as formulated above, are re-
placed by X, Y and £ respectively. Thus the data for a network problem consists of
spaces X, Y; linear transformations £: X —> Y, A: X —> X*; decompositions X = Xt +
X2 , Y = Fa + F2 consistent with £; and x* t X*, , x2 c X2 , Ui e Fa , y% e Y% , where
X* = X^ + Xt, F* = F^ + Ff are the corresponding dual decompositions. A solution
then consists of x t X, x* e X*, y tY, y* t Y* such that = y, Xx = a;* + £*?/* and the
projections of a;, a:*, y, y* in X\ , X2 , F, , Y% are x*, , x2 , y, , y% respectively. Thus we
have a problem in linear algebra.

6. Matrix formulation. Choosing bases in Ci(X), C\K), C0{K), C°(K), the trans-
formations y, f, d, 5 can then be represented by matrices [??], [f], [3], [5], the chains i,
I and the cochains e, E, P by column matrices [i], [/], [e], [E], \P\ respectively, where
[?;]-1 = [f], since f is assumed inherently non-singular. The network equations then
become the matrix equations [e] + [E] = [f][i], [i] = b]([e] + [E]), [3][i] = [/], [5][P] =
[E]. When the bases in CX{K), C\K) and C0(K), C°(K) are dual then [3]* = [«]. If the
basis for C\ (K) contains a basis for /?, (K), the remaining elements span a complement
Rj(K) of Z} (K) so that C\ (K) = ZX(K) + R,(K) is a canonical decomposition. The basis is
then called a canonical basis for C1{K). Similarly, we define a canonical basis for C0(K).
The isomorphism 3 | It, (K) of R, (K) and B0(K) can be represented by a non-singular
matrix [3]'. In this case [3] has the form

[a] = ■[0] [d]r

-[0] [0],
where [0] indicates the appropriate zero matrix. Finally, if the canonical basis for Ca{K)
is such that B0(K) is spanned by the boundaries of those elements of the canonical
bases for C\(K) which span (K), then [3]' is just the unit matrix. We say the canonical
bases are compatible. With compatible canonical bases,

[»] =

"[j]

-[^]J
[/] = '[/]/

. 0 .
[E] =

" 0 "

.[Eh.
[P] = P].

L[P]J
where [J] = [/]i , [E]2 — [/']2 . In this way, all the information is transferred directly
to Ci(K) and (^(K) which leads to the solution decomposition C, (K) = A, -j- A2 .

In practice the data for a network problem is given with respect to some bases.
The design constants determine both the admittance and impedance matrix which are
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the matrix representations of rj and f with respect to dual primitive bases. Let < b{ , ■ ■ • ,
bx > denote the primitive basis in terms of which (and its dual) [j?] = Y and let < h[ ,
■ • • , bj, > be the canonical basis which effects the solution decomposition C\ (K) =
A1 + A2 , that is {, • • • , br} spans At and {br+I , ■ ■ ■ , blV\ spans A2 . The change
from coordinates with respect to the primitive basis to coordinates with respect to the
canonical basis is given by a non-singular matrix T = i, j = 1, • • • , N. Thus if
[i\ and [i]' are the matrix representations of i in terms of the primitive and canonical
bases respectively, then [i]' = T[i\. Similarly T*, the transpose of T represents the
change in coordinates in ^(K) from the dual canonical basis to the dual primitive basis.
Let Tl be the submatrix of T defined by i = 1, • • • , N, j = r + 1, • • • , N. Tx
can be regarded as the matrix representation of the projection t(A2) in terms of the
primitive basis for Ci(K) and the basis < b'r+1 , • • • , b(. > for A 2. Similarly T\ represents
the inclusion <r(A%) = ir(A2)* in terms of the dual bases. The matrix representation
for the solution transformation ri(A2) in terms of the basis < b'r+1 , • ■ ■ , > for A 2
and the dual basis for A% is then YT\ . This then is the matrix to be inverted in the
solution of the network problem.

The computations can often be simplified by the judicious choice of bases leading
to simpler matrix representations. This has already been indicated above. In particular,
the 1-simplices of a maximal tree in K generate a complement R1 (K) of Zi(K). Each of
the remaining simplices gives rise to a simple circuit and the simple circuits so formed
are a basis for Z^K). The basis for C\ (K) so constructed is called a simple canonical
basis. The coordinate transformation T from a primitive to a simple canonical basis
has the form

T = [1] [0]
T2 [1 ]J

where [1] is the unit matrix and the only non-zero entries of T2 are ± 1. Moreover T~l
is obtained from T by replacing the submatric T2 by — T2 .

For a more detailed discussion of this the reader is referred to a forthcoming work
of the author [13].

Since the solution of a network problem reduces essentially to inverting the solution
matrix, we often speak of the inverse of the solution matrix as the solution.

7. The transformation matrices. For any two networks K, K' made up of the
same coils, Ci(K) and Ci(K') are canonically isomorphic and may be identified. How-
ever, to each of the networks K, K' corresponds a subspace Zt(K), ZX(K') which is de-
termined by the topology of the network.

Consider the set of canonical bases arising from the various networks made up of
the same N coils. Observe that a canonical basis for one network need not be a canonical
basis for a different network. Let bn be any such basis and Y", Zn , in, en , E„ the matrix
representations of rj, f, i, e, E in terms of bn and its dual. If bm is another canonical basis
the change from coordinates with respect to bm to those with respect to 6„ is given by
the non-singular transformation matrix Cmn . Then,

T = Cmni", en = Cfem , En = CZ"Em , = C?ZmC„m , Ym = CmnY'Cf .

Moreover Cmn = and if bP is another canonical basis then C"n = C*Cmn ■ The set of
transformation matrices [7] is a subset of the full linear group of N X N non-singular
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matrices but they do not, as Kron asserts [7] form a subgroup since the product C'ZC'l
is defined as a transformation matrix only when n = q.

If bn and bm are bases related to the networks Kn and Km , the transformation matrix
CZ permits the "transference" of the data of a network problem on K„ to one on Km . If
the problem has there been solved, say im and Vm have been determined so that im =
YmVm , then f = CJT, Vn = CZ* Vm is such that

Ynv„ = c:Ymcn:c:'vm = c:Ymvm = cy = in

is a solution on Kn . Thus problems and solutions can be transferred from one network
to the other.

8. The use of known solutions. Let C^K) = A1 + A2 be the solution decomposi-
tion for a given network problem and ri(A2) = tt(A2)t]<t{A%), K^i) = f<r(Ai) the
the admittance and impedance solution transformations respectively. If y'1 = f is
known, the admittance form of the network problem can be transformed into the imped-
ance form and can thus be solved by inverting rather than ri(A2). Whenever the
rank of the former is less than that of the latter, this will be a simpler problem. In fact,
we can write -o{A2)~li2 = ${i2 — f(.4,)_1 (x(A^)fz2)). Thus knowing the inverse of ij,
enabled us to invert 57(^2) by inverting instead f(^4i).

More generally, let C1(K) = B, + B2 with B2 D A2 and let 7i(B2) = tt(B2) t)<t{B*2):
B% —> B2 where Cl(K) = B% + B% is the dual decomposition. We can find a complement
A3 of A2 in B2 so that B2 = A3 + A2 . Then, as above, y](A2)~I(i2) = r)(B2)~l(i2 —
(ir(A%)ri(B.2)~lcr(A3y)~1 ir(A%)n{B2yli2) so that, knowing ri(B2)~\ r;(A2)-1 can be com-
puted by essentially inverting ir(A%)t](B2)~1<t(A3), the connection transformation, (see
Sec. 9 below).

There is an analogous impedance formulation. Thus f(yl1)_1F1 = v(V, — ri(A2yl
(■k{A%)t)V\)) and more generally, let C,(K) = B[ -j- B'2 with B[ D , t{B[) = ir(B',*)
M#0, where C'(K) = B[* + B2* the dual decomposition. Then as before, B[ can be
represented as B[ = Ax + A'z and

ruo-'F, = mrw, - wAomr^uwr^Ajmrvd.
To obtain a matrix formulation of the above procedure let bn = < bln , • • • , bNn > be

a canonical basis effecting the solution decomposition At + A2 , that is {hi , • • • , b'„}
span Ai and {brn+i , • • • , 6Aj span A2. In terms of this basis and its dual, v is represented
by the matrix Yn. Partitioning F",

F" =
"F" Y2

.F3" Yl

where FJ is an N — r X N — r submatrix of FB representing the solution transfor-
mation 77(^4.2). On the other hand, let bm = < b* , • • • , bZ > effect the decomposition
Ci(K) = Bt + B2 where {6^ , • • • , bZ,} span Bt and {ZC"1 , • • • , b%] span B2 , and let
Ym represent ij in terms of the basis bm and its dual and F™ be the N — s X N — s
submatrix of Ym which represents ri(B2) in terms of the basis < b'J1 , ■ • • , b* > and its
dual. The basis bn is chosen to effect both decompositions, that is < b'n+1, • ■ • , bl >
spans B2 and Dmn then represents the change in coordinates in B2 . In practice, the com-
putations are carried out in terms of the basis bn while Y1 and its inverse are given in
terms of the basis bm hence DZ*Fm_,D™ gives the matrix representation of 7j(/i2)~' in
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terms of bn. Finally, if D™ = [rf,-,], i, j = s + 1, • • • , N then Emn - {dis\, i = s + 1, • • • ,
r, j = s + 1, • • • , N gives the matrix representation of cr(A3) in terms of the bases
< b'n+1, • • • , brn > and < b"mhl, • • • , b* > so that the connection matrix to be inverted
is E?YmEmn .

9. The method of tearing and the method of identification. In both these methods
the topology of the network is utilized to obtain a decomposition Ci (K) = + B2 with

and hence Y" above, strongly diagonal. In this way the matrix representation of
77(^4.2), F" is inverted by inverting several matrices of smaller rank.

Let K0 be a network or complex and K1 , • • • , Kk subcomplexes of K0 such that
every 1-cell of K» lies in exactly one of the subcomplexes K{ , i = 1, • • • , k, and no coil
of Ki is inductively coupled to a coil of Kj , for i ^ j. Then

C^Ko) = CAR,) + C\(K2) + ••• + CM.
Moreover, the admittance transformation 77 respects this decomposition, that is j?, ■=
Tr^CiiKi)) Tja(CJ1 (Ki)) is just the admittance transformation for the network /v, , i =
1, • • • , k. Choosing a (canonical or simple canonical) basis consistent with this de-
composition, the matrix representation of 77 is strongly diagonal.

Let Kk+l be the complex consisting of the disconnected subcomplexes and let
Ci(Ki) = ZiCKi) -j- Ry(K(), i = 1, • • • , k, be canonical decompositions. Then Z(Kt+1) =
Zi(Kx) +■••-(- ZitKk) and + Rt(Kk+1) is a canonical decomposition for
C,{K) where R1(Kk+1) = + ••• + R,(Kk). Clearly Z,(Kk+l) C Z,(K(i) so that
R,(K0) can be chosen such that Zi(K0) + Ri(K,s) is a canonical decomposition for
C\(K0) = Ci(Kk+J) and C Ri(Kk+1). Setting 7?(ZQ = T(Rt(K,) w
1i(Kk+1) agrees with on B' (Ki) for i = 1, • • • , k. Hence for the proper choice of
basis, the matrix representation of t](Kk+l) is strongly diagonal. Thus, ji(Kk+i) can be
inverted by inverting each of y(Ki), i = 1, • • • , k. If the subcomplexes K{ ,i = 1, ■ • • , k
are chosen to consist of as few distinct complexes as possible, the matrix representations
of v(Ki) for the "same" complexes, can be made identical thus simplifying the task of
inverting v(Kk+1).

If the solution decomposition C^Kq) = Ai + /12 for a general network problem on
K0 is such that A2 C R(Kk+1) then the procedure of Sec. 8 can be applied. This is the
method of tearing. If dim A2 = N — k and dim Ri(Kk+-l) — N — s, then the inversion
of the N — r X N — r solution matrix is effected by inverting each of the diagonal
submatrices of the strongly diagonal N — s X N — s matrix and the r — s X r — s
connection matrix.

The problems considered by Kron illustrating his method are all in admittance form
with canonical solution decompositions (and hence of the special form considered by
Roth [10]). In the method of tearing, the problem is transferred from K0 to Kk+l where it
is now of the more general form treated above, for the canonical decomposition for K0
is not a canonical decomposition for Kk+l . In this case, however, A2 = Ri{K,,) C Ri(Kk+1)
and the above considerations apply. In general, however, A2 D R, (K0) so that the
condition that i2i(i^i+1) ID A2 may not be met. The problem can then be cast into the
impedance form by inverting the strongly diagonal matrix representation of 77. Then
A1 C Z\(KkM) and we can apply the admittance form of the technique of Sec. 8 wherein
we invert the solution matrix by inverting the strongly diagonal matrix representation
of Z(Kk+1) = 71-(D\Kk+l)) i;<r(Z1(Kk+1)) and an impedance connection matrix.

The greater the number of pieces into which K0 is torn to form Kk+1 , the smaller
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dim Zi(Kk+l) and the greater dim Rl(Kk+1), and hence the rank of the connection
matrix. The smaller the individual pieces the smaller the rank of the transformations
y(Ki). In practice, these two things have to be balanced. However, in order to apply
the technique of Sec. 8, R^Kk+i) must contain A2 .

The method of tearing is not in general suited to problems in the impedance form
for in this case, to apply the technique of Sec. 8 we want to shift the problem from
K0 to a new network Kk+2 where Z, (Kk+2) D At and the matrix representation of Kk+2)
can be chosen strongly diagonal. Since Zt(K0) D -4, , it is sufficient to have Zx(Kk+2) 3
Zi(Ko). Kk h2 is obtained from K0 by identifying in /v, , all those vertices common to
two of the subcomplexes K; , i, j = 1, ■ • • , k. This process of identification can be
modified by selective identification provided only that if K' is the subcomplex of Kk+2
obtained by identifications in /v, then Kk+2 can be torn into the disjoint subcomplexes
K' without opening any cycles of Kki2 .
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