
205

-NOTES-

UPPER BOUNDS AND SAINT-VENANT'S PRINCIPLE IN
TRANSIENT HEAT CONDUCTION*

bt BRUNO A. BOLEY (Institute of Flight Structures, Columbia University, N. Y.)

Summary. An investigation is carried out on transient heat-conduction problems
with prescribed surface temperature, and the validity of Saint-Venant's principle in
parabolic boundary-value problems is discussed.

Some upper bounds for the steady-state temperature in a body whose surface temper-
ature is prescribed over a small portion of the bounding surface were derived in a recent
investigation [1] concerned with various possible formulations of Saint-Venant's principle.
It was indicated there that this principle was a general property of elliptic differential
equations, and would not hold all the time for differential equations of other types. For
the parabolic type, however, it appeared that such a principle could be valid in a rather
general form; this conclusion was borne out by earlier work [2] in which actual use of
the principle was made. It is the purpose of this work to investigate this matter a little
further, and to establish for the transient heat conduction case (which is of the parabolic
type) the same sort of upper bounds which were treated in [1].

We note first a number of properties of fundamental solutions of the Fourier heat-
conduction equation

«vm t) = CD
which follow from the fact that [3]**

if T(P, t) > 0 and T(Q, 0) = 0, then T(Q, t) > 0 (2)
or in other words that it is impossible to lower the temperature anywhere in the interior
of a body by raising its boundary value.

Consider now the fundamental solution corresponding to a unit source liberated at
Qz at a time r and with vanishing temperature on the surface (analogous therefore to a
Green's function); the temperature at Qi due to this source is denoted by G(Qi , Q2 ,
t — r), and then

G(P, Q2 , t - r) = 0; G(Qt , Q, , 0) = 0. (3)
The following properties can now be derived:

(a) G(Q! , Qi, t — r) > 0, since Eqs. (3) hold, and G is positive by definition in the
neighborhood of Qi = Q2 , and regular everywhere but at Q, = Q2 ; therefore Eqs. (2)
apply and give immediately the desired result.

*Received February 16, 1959. This work is part of a project supported by the Office of Naval Re-
search.

**We will always use P to denote a point on the boundary, and Q a generic point, either on the
boundary or in the interior.
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(b) It follows from (a) that

dG(P, Qt , t — t) > q
dnp

where np is the inward normal to the surface at P.
(c) Consider two domains, D and D*, where D is completely contained in D*, and

let G and G* be the corresponding Green's functions; then G*(Qy , Q2 , t — r) > G{Qi ,
Q2 , t — t) with Qi and Q2 in D. The difference (G* — G) is in fact initially zero for Qt
in D, and its value on the surface of D is G* because of (a); hence Eqs. (3) apply and the
desired result follows.

(d) Consider now the case in which the surfaces of the two domains just described
have a common portion; it then follows from (c) that on the common boundary

dG*(P, Q2 , t - r) > dG(P, Q2 ,t- t)
dnp ~ dn„

Note that all the above properties are well-known in the steady state case [4],
The solution due to a prescribed surface temperature is [5]:

T(Q, t) = k f f T(P, r) dG<P' Q' 1 ^ dS(F) dr,
Jo Js onv (4)

where S is the surface of the body, and where it has been assumed that T(Q, 0) = 0.
We wish to consider a problem in which T(P, t) is zero everywhere except in a (small)
portion S0 , where we may set

I T(P, t) | < 1\(t) < T0 . (5)

Hence with property (b) we have

I T(Q, t) \ < k [' Ti(r) [ dG(P'®' 1 ~ t) dS{P) dr (6)
t/0 J So d7lv

and, further, if D and D* are two domains related as in (d) above:

I T(Q, t) \ <k [ 2\(r) [ dG*(P'Q' 1 ~ T) dS(P) dr
Jo J So vftp (7)

Eqs. (6) and (7) represent upper bounds to the solution. The determination of G or G* is,
however, often very difficult [6], but, as in [1], it may be at times possible to take for D*
a half-space (say x > 0 in Cartesian coordinates); then

e*(«, r) - 8|„(I I T)r {exp [ -4^-5] - »P [ <8)

where R is the distance between Qi and Q2 , and R* the distance between and the
reflection of Q2 in the plane x = 0. With the aid of (8) the integrations in Eqs. (6) and
(7) can be carried out; for example, if S0 is the surface bounded by the circle y2 + z2 =
h2/x, whose area is h2, then the upper bound along the line y — z = 0 is given by

T(Q
T,•'o l) ' - erf [(J)1/2] - {l + h) erf (! + 7T?). (9)
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Fig. 1

where the constant T0 has been used in place of the function 7\ (t) so as to avoid the
choice of specific applied-temperature history. The right-hand side of (9), a function of
the two parameters (x/h) and [h/(4 k £)*], is plotted in Fig. 1. Note that as t —» the steady
value for the upper bound is reached, i.e. 1 — [1 + (h2/irx2)]'i as found in Ref. [2]*.
For (x/h) = 0 the upper bound is always unity, and as (x/h) —» it always approaches
zero; this approach is quite rapid for all values of the parameter h/(4 k t)\ so that the
temperature for (x/h) > 1 could possibly be considered small compared to T0 . In this
case we may then say that Saint-Venant's Principle holds, and it is of interest to note
that it holds more strongly for the transient than for the steady state, or, in other words
that the steady state values provide an upper bound for the transient cases, in agreement
with [2]. This type of conclusion cannot be extended to problems in which the transient
case is governed by a hyperbolic equation [7].
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*Except for a numerical error in that reference which however in no way alters the conclusions
reached.


