QUARTERLY OF APPLIED MATHEMATICS

CERTAIN SOLUTIONS OF THE HEAT CONDUCTION EQUATION*

By
H. PORITSKY AND R. A. POWELL General Electric Company, Schenectady, N. Y.

1. Introduction. In the following we consider solutions of the heat conduction equation

$$
\begin{equation*}
\frac{\partial T}{\partial t}=k \frac{\partial^{2} T}{\partial x^{2}}, \quad k=K / \rho c \tag{1.1}
\end{equation*}
$$

for $x>0, t>0$, corresponding to certain heat inputs $h(t)$ for $t>0$ over the plane $x=0$: initially T vanishes for $x>0$. In (1.1) ρc is the specific heat per unit volume, K the conductivity.

To this end we start with the "Green's function" or the "instantaneous heat source" solution

$$
G(x, t)=\left\{\begin{array}{cl}
\frac{\exp \left[-x^{2} / 4 k t\right]}{2(\pi k t)^{1 / 2}}, & t>0 \tag{1.2}\\
0, & t<0
\end{array}\right.
$$

The function G satisfies Eq. (1.1) for $t>0$ and represents the temperature due to an amount of heat discharged at the time $t=0$ at $x=0$, in a medium of initial temperature $T=0$, the quantity of heat per unit area of the plane $x=0$ being such that

$$
\begin{equation*}
\int_{-\infty}^{\infty} G(x, t) d x=1, \quad t>0 \tag{1.3}
\end{equation*}
$$

The function G is Gaussian in x for each $t>0$ and has a deviation varying as $t^{1 / 2}$. For $x=0, t>0, G$ varies as $t^{-1 / 2}$. At $x=0, t=0, G$ possesses a singularity.

Assume that in a semi-infinite medium $x>0$, initially at $T=0$, heat of amount $h(t)$ is fed in at $x=0$ for $t>0$. The temperature is given for $t>0$ by the following definite integral:

$$
\begin{align*}
& T(x, t)=\frac{2}{\rho c} \int_{0}^{t} h\left(t^{\prime}\right) G\left(x, t-t^{\prime}\right) d t^{\prime} \tag{1.4}\\
&=\frac{1}{\rho c} \int_{0}^{t} h\left(t^{\prime}\right) \frac{\exp \left[-x^{2} / 4 k\left(t-t^{\prime}\right)\right]}{\left[\pi k\left(t-t^{\prime}\right)\right]^{1 / 2}} d t^{\prime}
\end{align*}
$$

The factor ρc in (1.4) is due to the specific heat of the material per unit volume: the factor 2 in the first integral is due to the fact that in (1.2) the heat flows to both sides of $x=0$, while $h(t)$ is defined as the heat flowing only to the side $x>0$.
*Received February 23, 1959.

For $x=0$, Eq. (1.4) yields

$$
\begin{equation*}
T(0, t)=\frac{1}{\rho c} \int_{0}^{t} \frac{h\left(t^{\prime}\right) d t^{\prime}}{\left[\pi k\left(t-t^{\prime}\right)\right]^{1 / 2}} \tag{1.5}
\end{equation*}
$$

In particular, let

$$
h(t)=\left\{\begin{array}{cc}
t^{n} / n!=t^{n} / \Gamma(n+1), & t>0, \quad n>-1 \tag{1.6}\\
0, & t<0
\end{array}\right.
$$

Upon introducing the variable of integration

$$
\begin{equation*}
t^{\prime}=t u \tag{1.7}
\end{equation*}
$$

Eq. (1.6) may be reduced to the beta-integral, yielding

$$
\begin{equation*}
T(0, t)=\frac{t^{n+1 / 2} \Gamma(1 / 2)}{\rho c(\pi k)^{1 / 2} \Gamma(n+3 / 2)}=\frac{t^{n+1 / 2}}{(\rho c K \pi)^{1 / 2}} \cdot \frac{1}{(1 / 2) \cdots(n-1 / 2)(n+1 / 2)} \tag{1.8}
\end{equation*}
$$

Equations (1.6), (1.8) are valid even for fractional $n>-1 / 2$, provided n ! is interpreted as $\Gamma(n+1)$.

The explicit expression (1.8) for $T(0, t)$ can be applied to general $h(t)$ by approximating to the latter by means of a polynomial in t

$$
\begin{equation*}
h(t)=h_{0}+h_{1} t+h_{2} t^{2} / 2!+\cdots+h_{n} t^{n} / n! \tag{1.9}
\end{equation*}
$$

and carrying out the corresponding superposition of the solutions (1.8)

$$
\begin{align*}
& T(0, t)=\frac{t^{1 / 2}}{\rho c(\pi k)^{1 / 2}}\left[\frac{h_{0}}{(1 / 2)}+\frac{h_{1} t}{(1 / 2)(3 / 2)}+\frac{h_{2} t^{2}}{(1 / 2)(3 / 2)(5 / 2)}+\cdots\right. \tag{1.10}\\
&\left.+\frac{h_{n} t^{n}}{(1 / 2) \cdots(n+1 / 2)}\right]
\end{align*}
$$

Turning to the integration of (1.4) for general x, it is shown in Sec. 2 that for the heat input (1.6) for $n=0,1,2, \cdots$ the resulting temperature is given by

$$
\begin{equation*}
T=T_{n}(x, t)=\frac{t^{n+1 / 2}}{(\rho c K)^{1 / 2}} f_{n}(u), \quad u=\frac{x}{2(k t)^{1 / 2}} \tag{1.11}
\end{equation*}
$$

TABLE I

n	P_{n}	Q_{n}
-1	$1 / 2$	0
	0	1
	1	$2\left(1+u^{2}\right) / 3$
2	$\left(4+9 u^{2}+2 u^{4}\right) / 15$	$-2 u$

where f_{n}, as indicated, depends only on u, and is given by

$$
\begin{equation*}
f_{n}(u)=2 \pi^{-1 / 2} P_{n}(u) \exp \left(-u^{2}\right)+Q_{n}(u) \operatorname{erfc}(u), \tag{1.12}
\end{equation*}
$$

where $P_{n}(u), Q_{n}(u) / u$ are certain polynomials in u^{2} of degree n, and "erfc" denotes the "complementary error function." For $n=0,1,2, P_{n}, Q_{n}$ are given in Table I. The row $n=-1$ in Table I is explained in Sec. 2, where recurrence equations for P_{n}, Q_{n} are also given, as well as expansions for T_{n} in powers of x.

Solutions for T_{n} for non-integer n are discussed in Sec. 3, where operational expressions for T_{n} are also given. It is shown that these solutions of (1.1) can be extended to $x<0$ and correspond to proper initial temperatures which vanish for $x>0$.
2. Solutions for polynomial power inputs. We consider heat inputs at $x=0$, of the form (1.6) for integer n

$$
\begin{equation*}
h(t)=h_{n}(t)=1 t^{n} / n! \tag{2.1}
\end{equation*}
$$

where $1=H(t)$ is the Heaviside unit function defined by

$$
1(t)=H(t)= \begin{cases}1 & \text { for } t>0 \tag{2.2}\\ 0 & \text { for } t<0\end{cases}
$$

It will be noted that h_{n} satisfy the relations

$$
\begin{equation*}
\frac{d h_{n}(t)}{d t}=h_{n-1}(t) . \tag{2.3}
\end{equation*}
$$

Therefore the corresponding temperatures $T_{n}(x, t)$ will satisfy similar relations

$$
\begin{equation*}
\frac{\partial T_{n}(x, t)}{\partial t}=T_{n-1}(x, t), \quad T_{n}(x, t)=0 \quad \text { for } \quad t<0 \tag{2.4}
\end{equation*}
$$

The sequence $h_{n}(t), T_{n}(t)$ may be extended by means of (2.3), (2.4), but not directly by means of (2.1), to $n=-1$, yielding

$$
\begin{equation*}
h_{-1}(t)=\frac{d h_{0}(t)}{d t}=\frac{d H(t)}{d t}=\delta(t) \tag{2.5}
\end{equation*}
$$

Fig. 2-1
where $\delta(t)$ denotes the "unit impulse function", or the "Dirac function". Indeed, if $H(t)$ be approximated by means of an analytic curve as in Fig. 2-1, then its slope will take on the appearance shown in Fig. 2-2, showing a hump of unit area near $t=0$. In the limit, as $\epsilon \rightarrow 0$, there results an instantaneous heat input for which the temperature is given, except for a factor $2 / \rho c$, by Eq. (1.2), namely,

Fig. 2-2

$$
T_{-1}(x, t)=\frac{2}{\rho c} G(x, t)=\left\{\begin{array}{l}
\frac{t^{-1 / 2}}{(\pi \rho c K)^{1 / 2}} \exp (-u)^{2}, \quad u=\frac{x}{2(k t)^{1 / 2}}, \quad t>0 \tag{2.6}\\
0, \quad t<0
\end{array}\right.
$$

It will be noted that Eq. (2.6) agrees with Eqs. (1.11), (1.12), provided P_{n}, Q_{n} are chosen as in Table I for $n=-1$.

For $n=0$, when (2.1) yields $h(t)=1$ for $t>0$, the temperature T_{0} may be calculated from (2.4), (2.6) or from (1.4). Carrying out the integration by parts, one obtains

$$
\begin{equation*}
T_{0}(x, t)=\left(\frac{t}{\rho c K}\right)^{1 / 2}\left[\frac{2 \exp \left(-u^{2}\right)}{\pi^{1 / 2}}-2 u \operatorname{erfc} u\right] \tag{2.7}
\end{equation*}
$$

The corresponding integrations (1.4) or (2.4) have been carried out for T_{n} for $n=1,2$. The results suggest for general integer n, the form (1.11), (1.12). Indeed, substitution of (1.11) in (2.4) verifies the assumption (1.11) provided the recurrence equations

$$
\begin{equation*}
\left[(n+1 / 2) f_{n}(u)-(u / 2) f_{n}^{\prime}(u)\right]=f_{n-1}(1) \tag{2.8}
\end{equation*}
$$

are satisfied. Multiplying both sides by $2 / u^{(2 n+2)}$, there results

$$
\begin{equation*}
\frac{(2 n+1) f_{n}(u)}{u^{2 n+2}}-\frac{f_{n}^{\prime}(u)}{u^{2 n+1}}=\frac{2 f_{n-1}(u)}{u^{2 n+2}}, \tag{2.9}
\end{equation*}
$$

where the left side is the derivative of $-f_{n}(u) / u^{2 n+1}$. Hence,

$$
\begin{equation*}
f_{n}(u)=-2 u^{2 n+1} \int_{u_{0}}^{u} \frac{f_{n-1}(u) d u}{u^{2 n+2}}+C u^{2 n+1} \tag{2.10}
\end{equation*}
$$

where C is a constant. In view of the condition $T_{n} \rightarrow 0$ for $x \rightarrow \infty$ or $t \rightarrow 0$, the choices $u_{0}=+\infty, C=0$, are proper. One obtains

$$
\begin{equation*}
f_{n}(u)=2 u^{2 n+1} \int_{u}^{\infty} \frac{f_{n-1}(u) d u}{u^{2 n+2}} \tag{2.11}
\end{equation*}
$$

For $n=-1$ Eq. (2.6) yields

$$
\begin{equation*}
f_{-1}(u)=\exp \left(-u^{2}\right) / \pi^{1 / 2} \tag{2.12}
\end{equation*}
$$

Hence, Eq. (2.11) now leads to

$$
\begin{equation*}
f_{0}(u)=\frac{2 u}{\pi^{1 / 2}} \int_{u}^{\infty} \frac{\exp \left(-u^{2}\right)}{u^{2}} d u \tag{2.13}
\end{equation*}
$$

Integration by parts again leads to (2.7).
Equation (2.7) is of the form (1.11), (1.12) with

$$
\begin{equation*}
P_{0}=1, \quad Q_{0}=-2 u \tag{2.14}
\end{equation*}
$$

Applying (2.11) for $n=1$ yields f_{1} of the form (1.12) with

$$
\begin{equation*}
P_{1}=\frac{2}{3}\left(1+u^{2}\right), \quad Q_{1}=-2 u-\frac{4}{3} u^{3} . \tag{2.15}
\end{equation*}
$$

A similar calculation for $n=2$ shows that T_{2} is given by (1.11), (1.12) with

$$
\begin{equation*}
P_{2}=\frac{4}{15}+\frac{3}{5} u^{2}+\frac{2}{15} u^{4}, \quad Q_{2}=-\left[u+\frac{4}{3} u^{3}+\frac{4}{15} u^{5}\right] \tag{2.16}
\end{equation*}
$$

Equations (2.14)-(2.16) are summarized in Table I. As pointed out, for $n=-1$, Eq. (2.6) still agrees with (1.11), (1.12), (2.12), provided we choose P_{-1}, Q_{-1} as in Table I.

For general integer n, there results upon substituting (1.11), (1.12) in (2.8) the following recurrence equations for $P_{n}(u), Q_{n}(u)$

$$
\begin{gather*}
(n+1 / 2) Q_{n}(u)-u Q_{n}{ }^{\prime}(u) / 2=Q_{n-1}(u) \tag{2.17}\\
(n+1 / 2) P_{n}(u)-u P_{n}^{\prime}(u) / 2+u^{2} P_{n}(u)+u Q_{n}(u) / 2=P_{n-1}(1) . \tag{2.18}
\end{gather*}
$$

Equation (2.17) determines Q_{n} except for the term $u^{2 n+1}$. Equation (2.18) then determines this term and P_{n}.

The relation (2.4) may be applied to express T_{n} as power series in x, by starting with the expansion for T_{-1} obtained from Eq. (2.6)

$$
\begin{align*}
T_{-1} & =\frac{t^{-1 / 2}}{(\pi \rho c K)^{1 / 2}}\left[1-u^{2}+\frac{u^{4}}{2!}-\cdots\right] \tag{2.19}\\
& =\frac{1}{(\pi \rho c K)^{1 / 2}}\left[t^{-1 / 2}-\frac{x^{2} t^{-3 / 2}}{4 k}+\frac{x^{4} t^{-5 / 2}}{2!(4 k)^{2}}-\cdots\right]
\end{align*}
$$

and integrating $(n+1)$ times termwise with respect to t. A single integration yields

$$
\begin{equation*}
T_{0}=\frac{1}{(\rho c K u)^{1 / 2}} \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n!} \cdot \frac{x^{2 n} t^{-n+1 / 2}}{k^{n} 2^{2 n}(n-1 / 2)}+g_{0}(x), \tag{2.20}
\end{equation*}
$$

where g_{0} is the constant of integration which may depend on x. This may be determined by noting that $g_{0}(x)$ must satisfy Eq. (1.1), since T_{0} and the series in (2.20) satisfy it. Hence $g_{0}(x)$ reduces to a first degree polynomial in x whose coefficients may be determined from the heat input condition at $x=0$

$$
\begin{equation*}
-\left.K \frac{\partial T}{\partial x}\right|_{x=0}=h(t) \tag{2.21}
\end{equation*}
$$

and from

$$
\begin{equation*}
T_{0}(0, t)=\frac{2 t^{1 / 2}}{(\rho c K \pi)^{1 / 2}} \tag{2.22}
\end{equation*}
$$

which follows from (1.8) for $n=0$. There results

$$
\begin{equation*}
T_{0}=\frac{t^{1 / 2}}{(\rho c K \pi)^{1 / 2}} \sum_{n=0}^{\infty} \frac{(-1)^{n+1} u^{2 n}}{n!(n-1 / 2)}-\frac{x}{K} \tag{2.23}
\end{equation*}
$$

Further t-integrations of (2.23) and similar determination of the constants of integration yield

$$
\begin{gather*}
T_{1}=\frac{t^{3 / 2}}{(\rho c K \pi)^{1 / 2}} \sum_{n=0}^{\infty} \frac{(-1)^{n} u^{2 n}}{n!(n-1 / 2)(n-3 / 2)}-\frac{1}{K}\left(x t+\frac{x^{3}}{3!k}\right) \tag{2.24}\\
T_{2}=\frac{t^{5 / 2}}{(\rho c K \pi)^{1 / 2}} \sum_{n=0}^{\infty} \frac{(-1)^{n+1} u^{2 n}}{n!(n-1 / 2)(n-3 / 2)(n-5 / 2)}-\frac{1}{K}\left(\frac{x t^{2}}{2!}+\frac{x^{3} t}{3!k}+\frac{x^{5}}{5!k^{2}}\right) . \tag{2.25}
\end{gather*}
$$

Similarly, there results for T_{n} for any integer n, the termwise integrated series along with the polynomial

$$
\begin{equation*}
-\frac{1}{K}\left[\frac{x t^{n}}{n!}+\frac{x^{3} t^{n-1}}{(n+1)!k}+\cdots+\frac{x^{2 n-1}}{(2 n+1)!k^{n}}\right] \tag{2.26}
\end{equation*}
$$

A further relation of interest between T_{n}

$$
\begin{equation*}
\frac{\partial^{2} T_{n}(x, t)}{\partial x^{2}}=\frac{1}{k} T_{n-1}^{\prime}(x, t) \tag{2.27}
\end{equation*}
$$

follows from (2.4) and the fact that T_{n} is a solution of (1.1).
The above expansions, while convergent for all u, converge slowly for large u, hence small t. For large u it is preferable to use asymptotic series of the form

$$
\begin{equation*}
\frac{T_{n}(x, t)}{t^{1 / 2}}(\rho c K)^{1 / 2}=\frac{2}{\pi^{1 / 2}} \exp \left(-u^{2}\right)\left[\frac{A_{1}}{u^{n+2}}+\frac{A_{2}}{u^{n+4}}+\cdots\right] \tag{2.28}
\end{equation*}
$$

where A_{1}, A_{2}, \cdots are constants. Indeed, for $n=-1$ such a series follows from (2.6) and

$$
\begin{equation*}
\operatorname{erfc}(v)=\frac{1}{\pi^{1 / 2}} \exp \left(-v^{2}\right)\left(\frac{1}{v}-\frac{1}{2 v^{3}}+\frac{1.3}{2^{2} v^{5}}-\cdots\right) \tag{2.29}
\end{equation*}
$$

For $n=1,2, \cdots$ one assumes (2.28) and applies (2.4), (2.29) to determine the coefficients A_{1}, A_{2}, \cdots for successive n.

Direct substitution of (1.11) in (1.1) shows that $f_{n}(u)$ is a solution of the differential equation

$$
\begin{equation*}
f_{n}^{\prime \prime}(u)+2 u f_{n}^{\prime}(u)-(4 n-2) f_{n}(u)=0 \tag{2.30}
\end{equation*}
$$

which vanishes for $u=+\infty$.
3. Half integer and fractional power inputs. Operational expressions. By differentiating T_{n} with respect to x, one obtains solutions of (1.1) corresponding to the heat input (1.7) for values of n differing from integers by one-half. Indeed, consider the function*

$$
\begin{equation*}
T_{n}^{\prime \prime}=-\frac{\partial T_{n}(x, t)}{\partial x} \tag{3.1}
\end{equation*}
$$

where T_{n} with integer n are as in Secs. 1,2 . The heat input of T_{n}^{\prime} at $x=0$ is given by

$$
\begin{equation*}
h(t)^{\prime}=-\left.K \frac{\partial T_{n}^{\prime}}{\partial x}\right|_{x=0}=\left.K \frac{\partial^{2} T_{n}(x, t)}{\partial x^{2}}\right|_{x=0} \tag{3.2}
\end{equation*}
$$

Since T_{n} satisfies (1.1), $\partial^{2} T_{n} / \partial x^{2}$ may be replaced by $(1 / k)\left(\partial T_{n} / \partial t\right)$, and hence, upon recalling (1.8),

$$
\begin{equation*}
h(t)=\left.\frac{K}{k} \frac{\partial T_{n}}{\partial t}\right|_{x=0}=\frac{\Gamma(1 / 2) t^{n-1 / 2}}{(\pi k)^{1 / 2} \Gamma(n+1 / 2)} . \tag{3.3}
\end{equation*}
$$

This proves the above statement regarding T_{n}^{\prime}.
Recalling the form (1.11) for T_{n}, one obtains from (3.1)

$$
\begin{equation*}
T_{n}^{\prime}=-\left(t^{n} / 2 K\right) f_{n}^{\prime}(u), \quad u=x / 2(k t)^{1 / 2} \tag{3.4}
\end{equation*}
$$

and this can also be put in a form similar to (1.12).
Of special interest is the case $n=0$ for which Eqs. (2.13), (3.4) yield

$$
\begin{equation*}
T_{0}^{\prime}=-\frac{f_{0}^{\prime}(u)}{2 K}=\frac{1}{K} \operatorname{erfc} \frac{x}{2(k t)^{1 / 2}} \tag{3.5}
\end{equation*}
$$

For $x=0, t>0$, this reduces to $1 / K$. Hence, the function $K T_{0}^{\prime}$ corresponds to a sudden temperature rise at $x=0$, equal to 1 . As shown in Fig. 3-1, at various instants the abscissas are changed in a fixed ratio. The heat input at $x=0$ varies as $t^{-1 / 2}$.

It is of interest to note that $K T_{0}^{\prime}$ can be obtained by dispensing with heat sources, but extending the medium to $x=-\infty$ and starting with the initial temperature

$$
T(x, 0)=2 H(-t)= \begin{cases}0 & \text { for } x>0 \tag{3.6}\\ 2 & \text { for } x<0\end{cases}
$$

(see Fig. 3-1 for the broken-line extensions).
From (2.27), (3.1) follows that the sequence of functions T_{n}^{\prime}, T_{n} can be similarly extended to $x<0$. In particular, the functions

$$
\begin{array}{lc}
u_{0}=K T_{0}^{\prime} / 2, & u_{1}=K T_{0} / 2, \quad u_{2}=k K T_{1}^{\prime} / 2 \tag{3.7}\\
u_{3}=k K T_{1} / 2, & u_{4}=k^{2} K T_{2}^{\prime} / 2, \quad \cdots
\end{array}
$$

form a sequence of solutions of (1.1) satisfying the recurrence equations

$$
\begin{equation*}
\frac{\partial u_{m}}{\partial x}=-u_{m-1}, \quad \frac{\partial u_{m}}{\partial t}=k u_{m-2} \tag{3.8}
\end{equation*}
$$

and such that for $t=0$

$$
u_{m}(x, 0)= \begin{cases}0 & \text { for } x>0 \tag{3.9}\\ (-x)^{m} / m! & \text { for } x<0\end{cases}
$$

*The - sign is chosen to render T_{n}^{\prime} positive.

Fig. 3-1
This may be verified directly by considering (1.11), (1.12) for negative x, letting $t \rightarrow 0$. $u \rightarrow-\infty$, and noting that efrc $(-\infty)=2$.

As indicated in (3.7), and noting (3.1),

$$
\begin{align*}
& u_{2 n+1}=k^{n} K T_{n}^{\prime} / 2 \\
& u_{2 n}=-k^{n-1} K\left(\partial T_{n} / \partial x\right) / 2 \tag{3.10}
\end{align*}
$$

We may solve for u_{m} in terms of its initial values (3.9) by means of G from (1.2)
$u_{m}(x, t)=\int_{-\infty}^{+\infty} u_{m}(s, 0) G(x-s, t) d s$

$$
\begin{equation*}
=\int_{-\infty}^{0} s^{m} \exp \left[-(x-s)^{2} / 4 k t\right] d s / 2(\pi k t)^{1 / 2} m! \tag{3.11}
\end{equation*}
$$

Upon putting $s=x-v(4 k t)^{1 / 2}$, there results

$$
\begin{equation*}
u_{m}(x, t)=\frac{2^{m-1}(k t)^{m / 2}}{\pi^{1 / 2} m!} g_{m}(u) \tag{3.12}
\end{equation*}
$$

where

$$
\begin{equation*}
u=x /(4 k t)^{1 / 2}, \quad g_{m}(u)=\int_{u}^{\infty}(v-u)^{m} \exp \left(-v^{2}\right) d v \tag{3.13}
\end{equation*}
$$

By expanding $(u-v)^{m}$ by the binomial theorem and integrating $v^{k} \exp \left(-v^{2}\right) d v$ by parts one can again express u_{m} in terms of $\exp \left(-u^{2}\right)$, erfc u, and polynomials in u.

With the possible exception of the application of the binomial theorem and Eq.
(3.10), Eqs. (3.8)-(3.13) apply equally well to all real $m>-1$, provided $m!$ be interpreted as $\Gamma(m+1)$.

For $x=0$ there results (for both integer and non-integer m)

$$
\left\{\begin{array}{l}
u_{m}(0, t)=2^{m-1}(k t)^{m / 2} \pi^{-1 / 2} g_{m}(0) / m! \tag{3.14}\\
\frac{\partial u_{m}(0, t)}{\partial x}=2^{m-2}(k t)^{(m-1) / 2} \pi^{-1 / 2} g_{m}^{\prime}(0) / m!
\end{array}\right.
$$

It is of interest to obtain an operational representation of the above solutions. To this end we replace the operator $\partial / \partial t$ by the symbol p in (1.1):

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{p}{k} u \tag{3.15}
\end{equation*}
$$

Solving as if p were a constant, one obtains

$$
\begin{equation*}
u=B \exp \left[x(p / k)^{1 / 2}\right]+A \exp \left[-x(p / k)^{1 / 2}\right] \tag{3.16}
\end{equation*}
$$

and dropping the first exponential for $x>0$ (presumably because otherwise $u=\infty$ for $x=+\infty$),

$$
\begin{equation*}
u=A \exp \left[-(p / k)^{1 / 2} x\right] \tag{3.17}
\end{equation*}
$$

This yields for $x=0$

$$
\begin{gather*}
u(0, t)=v(t)=A \tag{3.18}\\
-\left.K \frac{\partial u}{\partial x}\right|_{x=0}=h(t)=K A\left(\frac{p}{k}\right)^{1 / 2}=(K \rho c)^{1 / 2}(p)^{1 / 2} A \tag{3.19}
\end{gather*}
$$

Hence

$$
\begin{align*}
& h(t)=(K \rho c)^{1 / 2} p^{+1 / 2} v(t) \tag{3.20}\\
& v(t)=(K \rho c)^{-1 / 2} p^{-1 / 2} h(t) \tag{3.21}
\end{align*}
$$

Interpreting p^{-n} as

$$
\begin{equation*}
p^{-n} h(t)=\frac{1}{\Gamma(n)} \int_{0}^{t}(t-s)^{n-1} h(s) d s \tag{3.22}
\end{equation*}
$$

for both integer and non-integer $n>0$, there results

$$
\begin{equation*}
v(t)=T(0, t)=\frac{1}{(K \rho c)^{1 / 2}} \frac{1}{\Gamma^{\prime}(1 / 2)} \int_{0}^{t} \frac{h(s)}{(t-s)^{1 / 2}} d s \tag{3.23}
\end{equation*}
$$

which agrees with Eq. (1.5).
Putting (3.20) in the form

$$
\begin{equation*}
h(t)=(K \rho c)^{1 / 2} p\left[p^{-1 / 2} v(t)\right], \tag{3.24}
\end{equation*}
$$

there results

$$
\begin{equation*}
h(t)=\frac{1}{\Gamma(1 / 2)}(K \rho c)^{1 / 2} \frac{d}{d t} \int_{0}^{t} \frac{v(s)}{(t-s)^{1 / 2}} d s \tag{3.25}
\end{equation*}
$$

Equation (3.23) is an Abel integral equation for $h(t)$, and Eq. (3.25) yields its solution (see for instance, [1]).

For heat input given by

$$
\begin{equation*}
h(t)=t^{n} / \Gamma(n+1)=p^{-n} 1, \tag{3.26}
\end{equation*}
$$

where n is either integer or fractional, Eqs. (3.17), (3.19) yield

$$
\begin{equation*}
T_{n}(0, t)=v(t)=\frac{1}{(K \rho c)^{1 / 2}} p^{-(n+1 / 2)} 1=\frac{1}{(K \rho c)^{1 / 2}} \frac{t^{n+1 / 2}}{\Gamma(n+1 / 2)}, \tag{3.27}
\end{equation*}
$$

while Eq. (3.17) yields

$$
\begin{equation*}
T_{n}=\frac{1}{(K \rho c)^{1 / 2}} \frac{1}{\Gamma(n+1 / 2)} \frac{\exp \left[-(p / k)^{1 / 2} x\right]}{p^{n+1 / 2}} 1 \tag{3.28}
\end{equation*}
$$

By interpreting these operational expressions as Brownwich integrals in accordance with

$$
\begin{equation*}
f(p) 1=\frac{1}{2 \pi i} \int_{L} \frac{e^{p t}}{p} f(p) d p, \tag{3.29}
\end{equation*}
$$

where L is a proper path of integration in the complex p-plane, one obtains an alternative (contour) integral representation for the solutions T_{n} and hence also for u_{m}.

Reference

1. E. T. Whittaker and G. N. Watson, "A course of modern analysis", 4th ed., Cambridge, 1958, p. 229
