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CERTAIN SOLUTIONS OF THE HEAT CONDUCTION EQUATION*

Br
H. PORITSKY AND R. A. POWELL

General Electric Company, Schenectady, N. Y.

1. Introduction. In the following we consider solutions of the heat conduction
equation

dT ,d2T , n-JJ = k—2, = K/pc, (1.1)

for x > 0, t > 0, corresponding to certain heat inputs h(t) for t > 0 over the plane
x = 0: initially T vanishes for x > 0. In (1.1) pc is the specific heat per unit volume, K
the conductivity.

To this end we start with the "Green's function" or the "instantaneous heat source"
solution

exp [—x2/4:kt\
G{x, t) = \ 2(xkt)1/2 ' (1.2)

0 , t < 0.
The function G satisfies Eq. (1.1) for t > 0 and represents the temperature due to an
amount of heat discharged at the time t = 0 at x = 0, in a medium of initial temperature
T = 0, the quantity of heat per unit area of the plane x = 0 being such that

/:
G(x, t) dx = 1, t > 0. (1.3)

The function G is Gaussian in x for each t > 0 and has a deviation varying as tl/2.
For x = 0, t > 0, G varies as r1/2. At x = 0, t = 0, G possesses a singularity.

Assume that in a semi-infinite medium x > 0, initially at T = 0, heat of amount
h(t) is fed in at x = 0 for t > 0. The temperature is given for t > 0 by the following
definite integral:

T(x, t) = - [' h(t')G(x, t - t') dt'
pc Jo

-If' ut'\ exP [—x2/4 k(t - t')]
pc Jo h{t' [*k{t - t')]in dt '

(1.4)

The factor pc in (1.4) is due to the specific heat of the material per unit volume: the
factor 2 in the first integral is due to the fact that in (1.2) the heat flows to both sides of
i = 0, while h(t) is defined as the heat flowing only to the side x > 0.
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For x = 0, Eq. (1.4) yields

Tvn a _ 1 /*' W) dt' a k\
( ' } ~~ pc Jo W- t')]1'2" (1"5)

In particular, let

m = \W = f/Wn + 1), t > 0, n > -1. (J 0)
0, t < 0.

Upon introducing the variable of integration

t' = to, (1.7)

Eq. (1.6) may be reduced to the beta-integral, yielding

m a = r+1/2r(i/2) =  i __
' pc(rk)1/2T(n + 3/2) (pcKir)1/2 (1/2) • ■ • (n - 1/2) (n + 1/2) U j

Equations (1.6), (1.8) are valid even for fractional n > —1/2, provided n\ is in-
terpreted as T (n + 1).

The explicit expression (1.8) for T{0, t) can be applied to general h(f) by approxi-
mating to the latter by means of a polynomial in t

h(t) — h0 -\- hit 4- h2t2 /2! -f- • • • hnt"/n\ (1-9)

and carrying out the corresponding superposition of the solutions (1.8)

™ 0 - mS71 [wv +
hit | h%t |

(l/2)(3/2) ' (1/2)(3/2)(5/2)
+ Kf

(1/2) • • • (n + 1/2) ]■

Turning to the integration of (1.4) for general x, it is shown in Sec. 2 that for the
heat input (1.6) for n = 0, 1, 2, • • • the resulting temperature is given by

^n+1/2

T Tn(x,t) (pcjq^ /»(")' u 2(kt)1/2 '

TABLE I

Pn Qn

-1 1/2

-2 u

2(1 + u*)/3 —2m — 4w3/3

(4 + 9m2 + 2m4)/15 -u + 4u3/3 + 4m6/15
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where /„ , as indicated, depends only on u, and is given by

fn(u) = 2T~U2Pn(u) exp (—u2) + QJu) erfc(u) , (1-12)

where Pn(u), Qn(u)/u are certain polynomials in u of degree n, and "erfc" denotes the
"complementary error function." For n — 0,1, 2, Pn , Q„ are given in Table I. The row
n = — 1 in Table I is explained in Sec. 2, where recurrence equations for P„ , Qn are
also given, as well as expansions for Tn in powers of x.

Solutions for Tn for non-integer n are discussed in Sec. 3, where operational expressions
for Tn are also given. It is shown that these solutions of (1.1) can be extended to x < 0
and correspond to proper initial temperatures which vanish for x > 0.

2. Solutions for polynomial power inputs. We consider heat inputs at x = 0, of the
form (1.6) for integer n

h(t) = hn{t) = 1 f/n\, (2.1)

where 1 = H(t) is the Heaviside unit function defined by

1(0 = H(t) = J1 for 1 > °' (2.2)
lO for / < 0.

It will be noted that hn satisfy the relations

^ = K-^0. (2.3)
Therefore the corresponding temperatures Tn{x, t) will satisfy similar relations

dTn(gt' 0 = Tn-i(x, t), Tn(x, 0=0 for t < 0. (2.4)

The sequence hn{t), Tn(t) may be extended by means of (2.3), (2.4), but not directly
by means of (2.1), to n = —1, yielding

J (i'\ dK{t) (ill(0 A /r»
= ~dT = ~dt~- 8{t)> (2-5)

Hft)

/■

-e o e
Fig. 2-1
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where 8(t) denotes the "unit impulse function", or the "Dirac function". Indeed, if
H(t) be approximated by means of an analytic curve as in Fig. 2-1, then its slope will
take on the appearance shown in Fig. 2-2, showing a hump of unit area near t = 0.
In the limit, as e —* 0, there results an instantaneous heat input for which the temper-
ature is given, except for a factor 2/pc, by Eq. (1.2), namely,

SCtJ = —

T~i(x, t) = ~ G(x, t) = 1
pc

t-U 2
exp (—m)2, u = 0,; . 1/2 , t > 0,(■irpcK)1'2 ^ v " 2(H)1

10, t < 0.
(2.6)

It will be noted that Eq. (2.6) agrees with Eqs. (1.11), (1.12), provided Pn , Q„ are
chosen as in Table I for n = — 1.

For n = 0, when (2.1) yields h(t) — 1 for t > 0, the temperature T0 may be calculated
from (2.4), (2.6) or from (1.4). Carrying out the integration by parts, one obtains

T0(x, t) = |^2 8X^i/2 U ̂  ~ 2u erfewj- (2.7)

The corresponding integrations (1.4) or (2.4) have been carried out for T„ for n = 1, 2.
The results suggest for general integer n, the form (1.11), (1.12). Indeed, substitution
of (1.11) in (2.4) verifies the assumption (1.11) provided the recurrence equations

[(» + 1/2)/„(«) - (u/2)U(u)] = /„-i(l) (2.8)
are satisfied. Multiplying both sides by 2/m<2"+2), there results

(2n + 1 )/»(m) fn'(u) _ 2fn-i(u) . .
u2n+2 u2n+1 ~ u2n+2 ' \z-y)

where the left side is the derivative of —fn(u)/u2n+1. Hence,

/,(«) = —2un+1 f" + Cu2n+1, (2.10)
Ju o ^
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where C is a constant. In view of the condition T„ —» 0 for x —* <» or < —> 0, the choices
u0 = -j- oo t C = 0, are proper. One obtains

/.(«) = 2w2n+1 f f»-j±du. (2.11)
«/ u ^

For n = — 1 Eq. (2.6) yields

/_x(w) = exp (-v2)/ttU2. (2.12)

Hence, Eq. (2.11) now leads to

M«> - f <!«. (2.13)
7T Ju 24

Integration by parts again leads to (2.7).
Equation (2.7) is of the form (1.11), (1.12) with

P0 = 1, Qo = —2m. (2.14)

Applying (2.11) for n = 1 yields /, of the form (1.12) with

Pi = | (1 + u2), Q, = -2m - fu3. (2.15)

A similar calculation for n = 2 shows that T2 is given by (1.11), (1.12) with

p 4,3 2 , 2 4
~ l5 +5M + 15W ' = -[w + |m3+ (2.16)

Equations (2.14)-(2.16) are summarized in Table I. As pointed out, for n = — 1,
Eq. (2.6) still agrees with (1.11), (1.12), (2.12), provided we choose P_, , Q-i as in
Table I.

For general integer n, there results upon substituting (1.11), (1.12) in (2.8) the
following recurrence equations for Pn(u), Q„(u)

(n + 1/2)Q„(u) - uQn'(u)/2 = Qn-X(u), (2.17)

(n + 1/2)P„(«) — uP'n{u)/2 + u 2P„(w) + uQ„(u)/2 = Pn_!(l). (2.18)

Equation (2.17) determines Qn except for the term u2n+1. Equation (2.18) then de-
termines this term and P„ .

The relation (2.4) may be applied to express Tn as power series in x, by starting with
the expansion for T_x obtained from Eq. (2.6)

-1/2

f —  -    1 -1 0*pcK)1/2 ^ -m2 + | ]

(2-19)
= i [ru2 _ x*r3/2 xH~5n _

(irpcKy/2 L 4A; +2!(4fc)2 '"J

and integrating (n -f 1) times termwise with respect to t. A single integration yields
1 00 / l'\n+1 „2n •—»+l/2

T° = (pcKu)1/T~ 5 n\ k"22"(n - 1/2) + 9°^' (2-20)
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where g0 is the constant of integration which may depend on x. This may be determined
by noting that g0(x) must satisfy Eq. (1.1), since T0 and the series in (2.20) satisfy it.
Hence g0(x) reduces to a first degree polynomial in x whose coefficients may be de-
termined from the heat input condition at x = 0

-k£
ax

h(t), (2.21)

and from

7.(0, t) - (2.22)

which follows from (1.8) for n = 0. There results

_ _f (-l)-V' _ X.
io (pcKir)1/2 h n\{n - 1/2) K { )

Further ^-integrations of (2.23) and similar determination of the constants of inte-
gration yield

T = t3/3 _ y (-1)^" (224)
1 (pcKtt)1/2 n!(n - x/2)(» - 3/2) K \ + 3 \k) [ '

y (-irW" 1 (xf It
2 (pcKir)l/2 nl(n - 1/2) (n - 3/2)(« - 5/2) A' \2! ^ 3!fc ̂  5\k2J ^ ;

Similarly, there results for Tn for any integer n, the termwise integrated series along
with the polynomial

K Ln! + (» + 1)!fc + + (2n + l)!Jfe"J { '
A further relation of interest between Tn

d2^' ° = | n-i(x, <) (2.27)

follows from (2.4) and the fact that T„ is a solution of (1.1).
The above expansions, while convergent for all u, converge slowly for large u, hence

small t. For large u it is preferable to use asymptotic series of the form

T,lx, t)   2 , 2x I A\ i A% ) ~1 /rj (-jq\f'XpcKf1 ~ *1/2 exp ( w }Ln+2 + Mn+4 + '"J ' (2'28)

where Ax, , • • • are constants. Indeed, for n = — 1 such a series follows from (2.6) and

erfc (») = 772 exp (-t,2) (± - ^  )• (2.29)

For n = 1, 2, • • • one assumes (2.28) and applies (2.4), (2.29) to determine the co-
efficients A, , A2, • • ■ for successive n.

Direct substitution of (1.11) in (1.1) shows that /„(«) is a solution of the differential
equation

f'Jiu) + 2uf'lu) - (4n - 2!)/„(«) = 0 (2.30)
which vanishes for w = + °o.
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3. Half integer and fractional power inputs. Operational expressions. By differentiat-
ing T„ with respect to x, one obtains solutions of (1.1) corresponding to the heat input
(1.7) for values of n differing from integers by one-half. Indeed, consider the function*

riif   (i l\,(x, t) /q -I \
dx '

where Tn with integer n are as in Sees. 1, 2. The heat input of T'„ at x = 0 is given by

(3.2)= -K*-£ d2Tn(x, t)
— n 2

z=o

Since Tn satisfies (1.1), d2TJdx2 may be replaced by (1 /7c) (dTJdt), and hence, upon
recalling (1.8),

1X1/2 )f'1/2
,_0 ~ (irk)1/2r(n + 1/2)'

,,A K dTn (3.3)

This proves the above statement regarding T'n .
Recalling the form (1.11) for Tn , one obtains from (3.1)

= -(ty2K)U(u), u = x/2 (kt)U2, (3.4)

and this can also be put in a form similar to (1.12).
Of special interest is the case n = 0 for which Eqs. (2.13), (3.4) yield

rp, _ _/o(tt) 1_ £   ("3 =•)
2 K K 2(kt) [ )

For x = 0, t > 0, this reduces to l/K. Hence, the function KT'0 corresponds to a sudden
temperature rise at x = 0, equal to 1. As shown in Fig. 3-1, at various instants the
abscissas are changed in a fixed ratio. The heat input at x = 0 varies as t~I/2.

It is of interest to note that KT'0 can be obtained by dispensing with heat sources,
but extending the medium to x = — <=° and starting with the initial temperature

T(x, 0) = 2H(-t) = |° fOT X > °' (3.6)
[2 for x < 0,

(see Fig. 3-1 for the broken4ine extensions).
From (2.27), (3.1) follows that the sequence of functions T'n , Tn can be similarly

extended to x < 0. In particular, the functions

m„ = ATS/2, ih = ATo/2, u2 = kKT'J 2,

u3 = kKTj2, u4 = k2KT'2/2,

form a sequence of solutions of (1.1) satisfying the recurrence equations

(3.7)

and such that for t = 0

X5 = , ^7 = kum.2 (3.8)
dx at

, ns [0 for x > 0, .um(x, 0) = J (3.9)
[(—x)m/m\ for x < 0.

*The — sign is chosen to render T'n positive.
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Fig. 3-1

This may be verified directly by considering (1.11), (1.12) for negative x, letting t —» 0.
u —> — oo, and noting that efrc (— °°) =2.

As indicated in (3.7), and noting (3.1),

u2n+1 = knKTJ2,

u2n = —AT1 K(dTn/dx)/2. (3'10)

We may solve for um in terms of its initial values (3.9) by means of G from (1.2)
/» + co

,(x, t) = / um(Sj Q)G(x — s, i) ds
J — CO

W,

(3.H)
= f sm exp [-(« - s)2/4kt] ds/2(irkt)1/2mi.

J —00

Upon putting s = x — v{i!d)l/2, there results

um(x, t) = -—T/2~Tj (jJu), (3.12)
7T ill I

where

u = x/(4fc01/2> 9m(u) = f (v — u)m exp (—v2) dv. (3.13)
Ju

By expanding (w — v)m by the binomial theorem and integrating vh exp (— v2) dv by
parts one can again express um in terms of exp (— u2), erfc u, and polynomials in u.

With the possible exception of the application of the binomial theorem and Eq.
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(3.10), Eqs. (3.8)-(3.13) apply equally well to all real to > — 1, provided m\ be interpreted
as r (to + 1).

For x — 0 there results (for both integer and non-integer to)

'u.(0, t) = 2-\kt)m/\-1/1gm(0)/ml,

dUmf' l) = 2n-\Uym-1),\-l,2g'M/m\.
dx

It is of interest to obtain an operational representation of the above solutions. To
this end we replace the operator d/dt by the symbol p in (1.1):

f?-l «■ (3.15)
Solving as if p were a constant, one obtains

u = B exp [x(p/k)U2] + A exp [—x(p/k)'/2], (3.16)

and dropping the first exponential for x > 0 (presumably because otherwise u = <*> for
x = + co),

u - A exp [~(p/k)U2x]. (3.17)

This yields for x = 0

«(0, t) = v(t) = A, (3.18)

Kdu
~Kdx = m = KA{f)U2 = {Kpc)u\p)U2A. (3.19)

Hence

h(f) = (Kpc)U2p+U2v(t), (3.20)

v(t) = (Kpc)-uY1/2h(t). (3.21)

Interpreting p~" as

P'"h(t) = ^ fo (t - sy-'his) ds, (3.22)

for both integer and non-integer n > 0, there results

•<')-r("'')-(g>iXl/2)/,'(^lh (3'23)

which agrees with Eq. (1.5).
Putting (3.20) in the form

h{t) = (Kpc)U2p[p-U2v{t)}, (3.24)

there results

(3-25)
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Equation (3.23) is an Abel integral equation for hit), and Eq. (3.25) yields its solution
(see for instance, [1]).

For heat input given by

h(t) = f/r(n + 1) = p~* 1, (3.26)
where n is either integer or fractional, Eqs. (3.17), (3.19) yield

— (n+l/2) i 1 t
1+1/2

T„(0,0 v(t) {KpCy/2V " _1 (Kpc)1/2 T(n + 1/2) ' (3'27)

while Eq. (3.17) yields

r =  L_ 1 exp [~(p//c)1/2y]
" (/Cpc)1/3 T(n + 1/2) pn+1/2 ^

By interpreting these operational expressions as Brownwich integrals in accordance
with

/(p)1 = 2hLtf(p)dp' (3-29)
where L is a proper path of integration in the complex p-plane, one obtains an alternative
(contour) integral representation for the solutions Tn and hence also for um .
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