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DUALITY IN QUADRATIC PROGRAMMING* f

BY

W. S. DORN**
New York University

Abstract. A proof, based on the duality theorem of linear programming, is given
for a duality theorem for a class of quadratic programs. An illustrative application is
made in the theory of elastic structures.

1. Introduction. Recent interest in quadratic programming has resulted in a series
of computational methods for this type of problem. Some of these are described in
[1, 2, 3, 4, 5]. Little emphasis, however, has been placed thus far on the concept of duality
in quadratic programs. This concept, which has proved so valuable in linear programs,
is investigated briefly in what follows.

In Sec. 5 a dual problem for a class of quadratic programming problems is formulated
and the equality of the two objective forms is verified. Dennis [6] has indicated previously
that such a duality existed based on the Kuhn-Tucker "equivalence theorem" [7]. The
proof given here rests on the duality theorem for linear programs.

2. Notation. In what follows, matrix notation will be employed. Lower case letters,
x, y, ■ • ■ will denote column vectors and capital letters A, C, • • • will represent matrices.
Prime denotes transpose so that x', y', • ■ • are row vectors. The product x'y is the inner
product of the two vectors x and y.

A vector inequality will apply to each component of the vector, i.e., x > 0 indicates
that each component of x is non-negative.

3. Duality in linear programming. The linear programming problem may be posed
as follows. To minimize the linear form p'x over all /(.-dimensional vectors x satisfying
the constraints

Ax > b,

x > 0,

where p is an n X 1 vector, b is an m X 1 vector and A is an m X n matrix.
The dual problem to the above is to maximize b'v over all m-dimensional vectors v

satisfying
A'v < p,

v > 0.

The duality theorem [8, 9] states that if a solution to either problem exists and is
finite, then a solution to the other problem also exists and indeed

Minimum p'x = Maximum b'v. (3.1)
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4. A class of quadratic programs. A class of programs which has received considerable
attention [3, 5, 6] is

Minimize: f(x) = %x'Cx + p'x (4.1)
subject to

Ax > b, (4.2)

x > 0, (4.3)
where C is a symmetric, positive semi-definite, n X n matrix and p, b, A and x are as in
Sec. 3 above. This problem will be referred to as Problem I.

The symmetry restriction on C results in no loss of generality, while the positive
semi-definiteness requirement assures that f(x) is convex and that a local minimum
is also a global one [3, 5].

In order to prove a duality theorem for this class of programs the following lemma
is required.

Lemma. If C is a symmetric, positive semi-definite matrix then for any vectors x and y

y'Cy - x'Cx > 2x'C(y - x).

Proof. From positive semi-definiteness, for any x and y

(y - x)'C(y - x) > 0,

y'Cy > 2x'Cy - x'Cx.

Subtracting x'Cx from both sides

y'Cy - x'Cx > 2x'C(y - x).

5. A duality theorem for quadratic programs. A dual problem to Problem I is

Maximize: g(u,v) = -\u'Cu-\- b'v (5.1)
subject to

A'v — Cu < p, (5.2)

v > 0, (5.3)

where u is an n X 1 vector and v is an m X 1 vector. This problem will be referred to as
Problem II.

Theorem (Dual), (i) If x = x0 is a solution to Problem I then a solution (u, v) =
(x0 , t'0) exists to Problem II. (ii) Conversely, if a solution (u, v) = (u0 , v0) to Problem
II exists then a solution which satisfies Cx = Cu0 to Problem I also exists. In either case

Max g(u,v) = Min f(x). (5.4)

Proof. (A) Suppose first that x = x0 is the minimizing solution of Problem I. Con-
sider the following linear programming problem

Minimize: F(x) = —%x'0Cx 0 + x'0Cx + p'x (5.5)

subject to
Ax > b, (5.6)

x > 0. (5.7)
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Denote this as Problem I'. Notice that the constraint sets for Problem I and Problem I'
are identical.

Now suppose there exists an x* satisfying the constraints and such that

F(x*) < F(xo), (5.8)

i.e.,

(x'0C + p')(x* — x0) < 0.

It is easily verified that

Xi — x0 + k(x — x0), 0 < k < 1

also satisfies the constraints. Now

Kxi) ~ Kxo) = k[(x'0C + p')(x* — x0) + §fc(x* — x0)'C(x* — x0)].

Choose k to be

(;x'pC + p')(x* - So)
§(x* — Xo)'C(x* — XQ)

It follows that the term in square brackets is negative so

f(x i) - /(x0) < 0.

But /(x0) < /(xi) since x0 is the minimizing solution of Problem I so the inequality
(5.8) cannot hold for any x, i.e., for all x

F(x) > F(x„).

Thus x0 minimizes F(x) and is the optimal solution to Problem I'.
The dual problem to Problem I' is (Sec. 3)

Maximize: G(v) = —\x'JCx 0 + b'v (5.9)

subject to

A'v < Cxo + p, (5.10)

v > 0. (5.11)

Denote this as Problem II'. By the duality theorem for linear programs, (3.1),

Max G(v) = Min F(x) — F(x0).

If v = v0 is a maximizing solution of Problem II' then the last equation becomes

b'v0 = x'oCxo + p'xo . (5.12)

Consider now admissible solutions (u, v) to Problem II. In particular (x0 , v0) is
admissible. Now from (5.1)

g(xo ,v0) — g(u,v) = — ix'0Cx0 + b'v0 + \u'Cu — b'v

by the lemma

g(.Xo , v0) — g(u, v) > x'QC{u — x0) + b'v a — b'v
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and from (5.12)

g(x„ , v0) — g(u, v) > x'aCu + p'x0 — b'v. (5.13)

Now from (5.2) and (4.3)

XqCu > x'0(A'v — p)

and from (4.2) and (5.3)
— b'v > —x'0A'v.

Substituting these last two inequalities in (5.13)

g(x0 , v0) — g(u, v) > x'0A'v — x[,p + p'x0 — x'0A'v = 0.

Thus (x„ , d0) maximizes Problem II. Finally from (5.1), (5.12) and (4.1)

g(x0 , v0) = —\x'0Cxo + b'vo = ix„Cxo + p'xo = f(x0) (5.14)

which verifies the equality of the objective functions (4.1) and (5.1). This completes
the proof of part (i) of the theorem.

(B) The converse will be proved by applying the above result to Problem II. Suppose
a maximizing solution (u0 , v0) of Problem II exists. Problem II may be rephrased

subject to

Now let

where

Minimize: —g(u,v) = \u'Cu — b'v

Cu — A'v > — p,

v > 0.

u = r — s

r> 0,

s > 0.
Problem II then becomes

Minimize: —G(r,s,v) = \{r,s,v)'

subject to

(C, -C, — A')

r > 0

s > 0

v > 0.

C, -C, 0
-C, C, 0

0, 0, 0.
+ (0,0, -b)

> -p
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This is now in the form of Problem I, and by part (i) of the theorem (already proved
in A above) implies the existence of a solution to a dual problem which is

Maximize: — %(w,y,z)'

subject to

C, ~C, 0
-C, C, 0

0, 0, 0,

w

p x

Cx — Cw + Cy + Oz < 0 (5.15)

-Cx + Cw - Cy + Os < 0 (5.16)

-Ax + Ow + Qy + 02 < -b (5.17)

x > 0.

Moreover, the maximizing solution is required to satisfy

w — y = u0 , (5.18)

Z = V o .

Inequalities (5.15) and (5.16) imply that

Cx = C(w — y) (5.19)

so the dual problem may be rewritten

Maximize: —\x'Cx — p'x = —j(x)

subject to

Ax > b,

x > 0,

which is exactly the original Problem I. From (5.18) and (5.19) then the optimizing
solution x to Problem I must satisfy

Cx = Cu0 ■

Finally from Eq. (5.14) it follows that

Min —g(u,v) = Max — j{x),

which completes the proof of part (ii).
6. Computation of the dual variables. The proof in the preceding section also pro-

vides a means for calculating the dual variables (u0 , v0) once the primal variables, x0 ,
have been found.

The vector u0 is identical with xu . The vector v0 is then a solution of a linear pro-
gramming problem

Maximize b'v
subject to

A'v < Cx0 + p,

v > 0.
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7. Other classes of problems. The quadratic problem (Problem I) may be formulated
in various other ways with resulting changes in its dual (Problem II). Some of these,
including the original, are tabulated below for reference.

Primal Problem Dual Problem

Type I

Min \ x'Cx + p'x Max — § u'Cu + b'v
Ax > b A'v — Cu < p

x > 0 v > 0

Type II

Min \ x'Cx + p'x Max — \ u'Cu + b'v
Ax > b A'v — Cu = p

v > 0

Type III

Min \ x'Cx + p'x Max — \ u'Cu + b'v
Ax = b A'v — Cu < p

x > 0

Type IV

Min | x'Cx + p'x Max — \ u'Cu + b'v
Ax = b A'v — Cu = p

The Type IV problem may, of course, be treated by standard Lagrange multiplier
techniques. The dual problem for a problem of this type has been given previously
[10]. Indeed, v are the multipliers for the original problem.

Notice that at the optimum, in all types listed above,

u = x. (7.1)

8. An application to elasticity. As an application of the duality theorem for quad-
ratic programs, consider the problem of determining the elastic solution of a plane
pin-jointed truss consisting of n bars and m joints (n > 2m — 3). The truss is externally
statically determinate and the applied loads lie in the plane of the truss.

The problem may be formulated as minimizing the strain energy subject to equi-
librium constraints (Castigliano's Second Theorem).

If Sj denotes the force in the jth member and A, , Ej , L,- are its cross-sectional area,
elastic modulus and length respectively, then the strain energy U is
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and the equilibrium conditions may be written [11]
n

auSj = Ft (i = 1, 2, • • • , 2m — 3),
J -1

where F{ is the force component at the «th joint. The au depend on the geometrical
configuration and are essentially direction cosines of the angles between the bars and
the coordinate axes.

This is a problem of Type IV and the dual problem to this minimum problem is
from Sec. 7

subject to

Maximize: — § ^ S* + F.it,-
j-1 i i »" = l

2 m — 3

^ ' ctxj'Wi ^ Sj 0 (j 1, 2, ■ • • , n).

The use of the variables in the dual is justified by Eq. (7.1). Making use of Hooke's
law which gives the elongation, e,- , of the jth bar as

the problem becomes

e■ = Li S-' AjEi ' '

n A h1 2m —Z

Maximize: — \ e) + J] F.m,
I-1 t-1

subject to
2to —3

dijUi - e,- = 0 0 =1,2, ■■■ ,n).
i = l

If, for the moment it is assumed that the «, are the displacement components of the
z'th joint, the objective function for the dual problem is the negative of the total potential
energy and the constraints become the compatibility equations. The dual problem is,
therefore, equivalent to the Theorem of Minimum Potential Energy. The equality of
the objective functions results in a restatement of the Principle of Virtual Work.

Other applications to electrical networks containing resistors, diodes and voltage
and current sources may be found in [6],
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