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A CONTINUUM MODEL FOR TWO-DIRECTIONAL TRAFFIC FLOW*

BY

J. H. BICK** anp G. F. NEWELL{
Brown University

Abstract. The flow of traffic in two directions of an undivided highway is investi-
gated using the equations of continuity and assumed empirical relations between the
average velocities and densities in both lanes. These lead to a pair of quasi-linear partial
differential equations. Even if the velocity in one lane depends only very weakly on the
density in the other lane, it is found that for a certain small range of densities the equa-
tions are of elliptic rather than the expected hyperbolic type. For densities outside this
range, solutions of the equations can be found for various special types of initial con-
ditions. A

1. Introduction. A number of papers have now been published treating the theory
of traffic flow from the standpoint of the dynamics of individual cars, statistics and
continuum mechanics. Lighthill and Whitham [1], Richards [2], and De [3] have studied
unidirectional flow of traffic by assuming that the empirical relation between the average
velocity of cars and the density of cars, determined under steady state conditions,
applies also to non-steady flows. They then use the one dimensional equation of con-
tinuity to describe how the densities vary with time for various types of disturbances.

Here we shall attempt to extend their work to include two lanes of traffic flowing
in opposite directions. We use two equations of continuity and assume that the average
velocities are functions of the densities in both lanes. If we let p and ¢ denote the densities
of cars and U and V the average velocities in the right-moving lane (p-lane) and the
left-moving lane (g-lane), respectively, the equations of continuity for the two lanes are

y 0 + (pU)z = 07 q: + (qV)z = 07 (1)

in which subscripts denote partial differentiation with respect to the subscript variable.

We will assume that p, ¢, U and V satisfy the following conditions: (A) U and V are
functions of p and ¢ only; i.e., the highway is uniform in both space and time; (B) p and
g are never negative; (C) U is non-negative and V non-positive; (D) U and V have
continuous first derivatives with respect to p and ¢; (E) U is a monotone decreasing
and V a monotone increasing function of both p and ¢; (F) for each value of ¢, there is a
value of p at which U = 0 and for each p there is a value of ¢ at which V = 0; (G)
U(p, @) = —V(q, p); i.e., both lanes are physically identical. Property (F) in conjunction
with (A) and (B) implies that the allowable domain of solutions is finite and bounded
by the four curves p = 0,¢ = 0, U = 0 and V = 0 in the (p, ¢) plane.

If shocks develop, they must satisfy the integrated equations of continuity

A[U(A,B) — W] =plUp,q) — W], B[V(4,B) - W]=q[Vp,9 — W], (2
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where W is the shock velocity, A and B represent the densities in the p- and g¢-lanes
respectively on the left side of the shock and p, ¢ the corresponding densities on the right
side of the shock. It follows from this, that if there is a shock in one lane, there must
also be a contiguous shock in the other. If, for example, A were equal to p (no shock
in the p-lane), Eq. (2) gives U(4, B) = U(4, q). By property (E), this implies that
B = ¢, so there can be no shock in the g-lane either.

Several methods exist for solving quasi-linear differential equations such as Eq. (1).
First, there is the method of characteristics in the physical or (x, #) plane. The character-
istics of a system of equations are those curves in the (z, £) plane along which disturbances
will propagate and a set of two first order partial differential equations is called hyperbolic
if there are two real, one-parameter families of such curves. If, for hyperbolic equations,
initial conditions are specified along a non-characteristic curve, the solution, can be
obtained by numerical integration along the characteristics [4, 5].

A second method of solution results from exchanging the roles of dependent and
independent variables. The technique is well known in the theory of compressible fluids
and is referred to as the hodograph transformation [6]. The equations of continuity in
the (p, ¢) or hodograph plane are,

Tq — U+ pUp)tc + pUatp =0,
r, — (V+ qVt, + qV,t, = 0.

®3)

Since this system is linear, the characteristics, unlike those in the physical plane, are
independent of initial conditions. The initial conditions, given by specifying p and ¢
as functions of z at time zero, describe a parametric representation of a curve, p =
p(z, 0), ¢ = ¢(z, 0), in the hodograph plane along which x and ¢ (¢ = 0) are specified.
Such data, if it does not lie along a hodograph characteristic can be uniquely extended
to define a solution z = (g, p), ¢ = (p, q).

Although one would expect the equations of continuity to be of hyperbolic type, the
only type which gives a unique solution for initial data p(z, 0) and ¢(z, 0), Eq. (1) is
not always hyperbolic. The physical plane characteristics are defined by the velocities

2w =22 = oU), + (V). £{6U), — @V + 40U V3" @)

For every fixed value of ¢, pU is zero when p is zero and also when p has its maximum
value, i.e., when U is zero. It is positive between these points, and therefore, by virtue
of property (D), it has a maximum at which (pU), is zero. Similarly, qV has at least
one negative minimum in the allowable range of ¢ for every fixed value of p. Conse-
quently, there exist values of p and ¢ for which [(pU), — (¢V),]* vanishes. By properties
(B), (D), and (E), the term 4¢pU,V, is negative for all ¢ and p greater than zero. For
a certain range of p and g, the characteristics are therefore complex, and the equations
of continuity are of elliptic type. Outside this region the equations are hyperbolic.

As yet we have found no satisfactory explanation of why the equations should be
elliptic nor any satisfactory suggestion as to what one should do about it. Although
one could imagine hypothetical situations that would give rise to densities in the region
of ellipticity, it is not obvious whether or not such situations could be realized in practice.
It may, however, also be true that one is not justified in assuming that the relations
between the velocities and densities, determined under stationary conditions, are also
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valid under non-stationary conditions, in which case much of the theory described here
as well as that in reference [1, 2, 3] may collapse. One might, in fact, seriously question
any theory in which the future behavior of a system is determined with no reference to
the distribution of the velocities of individual cars. On the other hand, the ellipticity

1

0 p 1

F1a. 1. The bounded domain of solutions in the hodograph plane and the region of ellipticity obtained
from Eq. (5 a) are shown for 8 = 14. The two families of characteristics are distinguished by the labels, 4
or —, and the arrows indicate the direction of increasing wave velocity.

arises when the densities are such that, in the absence of a coupling, the wave velocities
in the two lanes are nearly equal. Under such conditions, one could reasonably expect
any coupling between the lanes to produce some unusual effects.

2. A special case. It has been found experimentally for unidirectional traffic that
the average car velocity is approximated reasonably well by the linear relation
U = U, — ap. To illustrate some of the consequences of the present model, we consider
the velocity-density relations

U=Vo“0fP—BQ; V=_U0+“Q+Bp’ (5)

where « and 8 are constants with & > 8 > 0. These satisfy all the properties listed in
the previous section and reduce to Richards velocity functionsif 8 = 0, p = Oor ¢ = 0.
Furthermore they have the form of the first three terms of a Taylor’s series expansion,
so if we know the velocities for some values of p and g, we could use Eq. (5) for small
variations in p and ¢ about these values.

The velocity relations, the equations of continuity, and the shock equations, may
be non-dimensionalized by the substitutions U’ = U/U, , V' = V/U,, p' = ap/U, ,
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q = aq/U,,B8 = B/a,t’ = Ust,and W = W/U, . Dropping the primes for the sake
of simplicity in notation, we obtain from Eq. (5)
U=1_p_BQy V=_1+Q+Bp) (53')
whereas Eqgs. (1-4) remain unchanged.
The region of the hodograph plane in which the equations of continuity are of elliptic
type is the interior of an ellipse (see Fig. 1) obtained by setting the radical of Eq. (4)
equal to zero. This ellipse is tangent to the two axes of the hodograph plane and to the

line p + ¢ = 1. It has a minor axis of width (2)'*8/(2 + 28).
The characteristics in the hodograph plane are determined by the differential equation

Bp (g’ — 12— @2+ PP+ 9ldpdg + Bg (dp)’ =0 (6)

the solution of which can be found by means of the Legendre transform [7]. In parametric
form, the solution is

p=xPE _yx), -4 ™
with
Xe X 1-2¢ X
v - FEADE B o) (72)
e = B/ +28), (7h)

and C is a constant of integration. For any X, Eq. (7a) determines Y and Eq. (7) then
gives both p and ¢ as a function of the parameter X. In addition Eq. (6) has the singular
solution ‘

ptaeg=1 8

which forms an envelope of the general solutions. Some characteristics for § = 1/3
are shown in Fig. 1. A more detailed description of the hodograph characteristics par-
ticularly for 8 < 1 is given in [8].

The shock relations, Eq. (2), consist of two equations in the five variables 4, B, p, ¢
and W. If we eliminate W from these equations, we obtain a quadratic equation in p,
g, A, and B which for any fixed values of A and B can easily be solved for ¢ as a function
of p or vice versa. The resulting curve in the (p, ¢) plane is known as the shock polar
corresponding to the given values of 4 and B. If (4, B) lies in the hyperbolic region of
the hodograph plane, the shock polar will pass through the point (4, B) twice and will
be tangent each time to one or the other of the two hodograph characteristics through
the point (A4, B). Some typical shock polars are shown in Fig. 2.

Although it is always possible, for some shock velocity W, to find a shock satisfying
Eq. (2) between any denisities (4, B) and densities (p, ¢) lying on the appropriate shock
polar, the resulting shock may not be stable (even for 8 = 0). If at zero time, we specify
continuous strong discontinuities that lie on a shock polar and we wish to calculate the
densities at time Af later, Eq. (2) gives us two equations in the five unknowns 4, B,
p, ¢ and W at the time At. Additional relations are given by Eq. (1) applied along the
physical plane characteristics provided these characteristics emanate from the line
t = 0 along which the initial data are specified. It follows that if a strong discontinuity
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F1c. 2. The shock polars of points, (4, B), above and below the ellipse are drawn for 8 = 0 and < 1

in (a) and (b). The dashed lines are the shock polars for 8 = 0, and the solid lines, for 8 < 1. Shock

polars for a point, (4, B) located just above and just below the line p + ¢ = 1 are shown for 8 = 14
in (¢) and (d). The stable segments of the shock polars are shown by the heavy lines.

in initial data is to persist, three of the four characteristics issuing from the line £ = 0
on either side of the shock path must intersect this shock path in the (x, ) plane. If less
than three characteristics intersect the shock path, we should look for wave type solutions
of Eq. (1). If four intersect the shock path, the problem is overspecified. Physical plane
characteristics originating from the left side of the shock will meet the shock path if
their velocities are greater than the shock velocity W, whereas those on the right side of
the shock path will meet it if their velocities are less than the shock velocity. It is possible
to distinguish two types of stable shocks accordingly as two of the three characteristics
that must cross a stable shock originate from the left or from the right of a shock. We
refer to these as left or right shocks, respectively. If a shock is to be a stable left shock,
the inequalities

w.(4,B) >w(4,B) > W >w(p,q, wp,9>W )
must be satisfied and to be a stable right shock, the inequalities
wi(4,B) > W > w.(p, g >wilp, @, w(4,B)<W (10)

must be satisfied where w, and w_ represent the positive and negative roots of Eq. (4).

Since the stability criterion adopted here is based upon the properties of the physical
plane characteristics, we can say nothing about the stability of shocks when either of
the points (4, B) or (p, ¢) lies in the elliptic region of the hodograph plane.
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3. Discontinuous initial data. In certain cases, as for example when a stoplight
changes from red to green, we may expect the initial conditions to be discontinuous.
We shall consider here solutions of the equations of continuity for initial data of the
type p(z, 0) = p:, g(x, 0) = ¢q; for z < 0 and p(z, 0) = p, , g(z,0) = ¢, forz > 0
where p; , p. , ¢: , and ¢, are constants. Such initial data map into the hodograph plane
as just two points, (p: , ¢:) and (p, , ¢.).

The equations of continuity and these initial conditions are invariant under the
continuous group transformation z’ = vz, # = ¢, with v any arbitrary constant and so
we may expect to find solutions in which the dependent variables, p and g, are functions
of z/t only [9]. In this case, an increase in time corresponds only to a rescaling of the
z axis. Thus, if a solution exists, its form will be the same for any positive time. Sub-
stitution of y = z/¢ into Eq. (1) gives,

d d d
-y-2—s0 L =mil, (1+y—2q—ﬂp)a§=ﬂqg§- i)

Since Eq. (11) is homogeneous and linear in the derivatives, either dp/dy = dg/dy = 0,
in which case the solutions, p and ¢, are constants or the determinant of coefficients must
vanish i.e.,

y=0—-p/2(qg—» £ {1 —Q+8/20p+ QF — Bpe}'”. (12)

In the latter case, substitution of Eq. (12) into Eq. (11) gives the differential equation
for the hodograph plane characteristics, Eq. (6), which has been solved in Sec. 2. Thus,
for each hodograph characteristic there exists a special solution p(y), ¢(y) obtained
by assigning to each point (p, ¢) along this characteristic the value of y given by Eq.
(12). Whether one chooses the + or — sign in Eq. (12) depends upon which of the two
families of characteristics the one in question belongs. The characteristics in Fig. 1 are
labeled - or — accordingly as one should use the + or — sign in Eq. (12) and we shall
refer to the corresponding solutions of Eq. (11) as plus or minus waves, respectively.

The complete solution of Eq. (11) is obtained now by considering all possible ways
in which one can decompose the y-axis into intervals on each of which p(y) and ¢(y)
are either constants or form plus or minus waves and at the boundaries of which p(y)
and ¢(y) are either continuous or have stable shocks. For any shock or wave, y is finite,
so there must exist a finite y to the left of which p and g are constants,p = p,and ¢ = ¢;,
and another y to the right of which p = p, and ¢ = ¢, .

The values of y given by Eq. (12) are the velocities of the physical plane character-
istics corresponding to given values of p and g, as one can see by comparing Eq. (12)
with Eq. (4) and (5a). The conditions for stability equations (9) and (10), therefore,
take the special form in which w, (p, ¢) is replaced by ¥y = y, (p, ¢) evaluated from Eq.
(12) with the positive root, etc., and W is the value of y for the shock.

There are only a few combinations of waves and/or shocks that can be used to con-
struct a permissible solution without violating the shock stability conditions or the
requirement that p and ¢ be single valued. Suppose, for example, that as y increases, a plus
wave were to terminate at some point where the densities are (4, B) and the velocity y is
¥+ (4, B). One could attach to the right of the plus wave, y > y. (4, B), a region of
constant densities but according to Egs. (9) and (10), a shock from the densities (4, B)
to any other densities (p, ¢) would have a velocity W which is less than y. (4, B), i.e.,
it would occur to the left of y, (A4, B). A minus wave starting at a point where the
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densities are (4, B) would also have a velocity y- (4, B) < y. (4, B), to the left, of
¥+ (4, B), unless per chance (4, B) lies on the ellipse where y_ = y. . If (4, B) does lie
on the ellipse, there is the possibility that a plus wave can be followed by a minus wave,
provided that the plus wave characteristic through (4, B) approaches (A, B) with y
increasing and the minus wave leaves (4, B) with y increasing. Figure 1 shows the
direction of increasing y for the various characteristics and one can see that the only
characteristic having this property is the singular characteristic, Eq. (8), and the only
point (4, B) where this can happen is the point (1/2, 1/2). We conclude from this that
the only thing that can appear to the right of a plus wave is a region of constant densities
unless the plus wave belongs to the singular characteristic and terminates with densities
(1/2, 1/2).

If one has a stable right shock from any density (4, B) to densities (p, ¢), it can be
followed by nothing except a region of constant density because, by Eqs. (9) and (10)
again, the shock velocity is larger than either y. (p, ¢) or y- (p, ¢). Similarly one can
show that from a left shock, one may go to a region of constant densities which in turn
may be followed by either a plus wave or a right shock but not another minus wave
or left shock.

It follows from this that the only combinations of waves and shocks that can form
permissible solutions are (1) a single wave or shock going from (p,;, ¢;) to (p, , ¢,) with
regions of constant density on either side, (2) a minus wave of left shock going from
(p: , ¢:) to some densities (p;, ¢;) followed by a region of constant densities (p; , ¢;) and

1RK—
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F1a. 3. Points in numbered regions, shown for 8 = 0.1, can be reached by various allowed solution
sequences starting from some point 0 below the ellipse. The dotted curves represent the maps of sample
solutions.
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then either a plus wave or a right shock to (p, , ¢.) (3) a minus wave or left shock going
from (p; , q;) to a point on the singular characteristic followed by a region of constant
density, then the plus wave to minus wave sequence described above, another region
of constant densities, and then possibly also a right shock or plus wave to (p. , q.).

Figure 3 shows the various domains in the hodograph plane that can be reached by
these allowable combinations of waves and/or shocks from a point (p, , ¢;) designated
in Fig. 3 as the point 0 located below the ellipse. The line 04 is the image of a minus
wave, a hodograph characteristic through 0 in the direction of increasing y—, and the
line OC represents a plus wave, a hodograph characteristic through 0 in the direction
of increasing y, . The lines 0D and EK depict those segments of the shock polar which
are the loci of stable left shocks from the point 0, and the lines 0J and L3 represent
stable right shocks from 0. Points on these lines can be reached by a single wave or shock
from 0.

Any point in region 1 of Fig. 3 can be reached from 0 by a combination of a minus
wave along 0A followed by a plus wave into region 1. The boundary AB of this region
is the plus characteristic through A. A sample path is sketched in Fig. 3, and the physical
plane solution corresponding to it is shown in Fig. 4(a). All points in regions 2a in Fig.

(a) (b)

Fi1a. 4. The two solutions whose hodograph maps are shown in Fig. 3 are represented by plotting p and ¢
as functions of y = z/¢. Figure 4 (a) shows a minus wave followed by a plus wave and Fig. 4(b) a left
shock followed by a plus wave.

3 can be reached by a combination of a left shock along the line 0D followed by a plus
wave into region 2a. A sample path is shown in Fig. 3, and the corresponding physical
plane solution in Fig. 4(b). All points in the region 2b can be reached with a left shock
from O to the line EK followed by a plus wave into region 2b and all points in region 3
can be reached with a minus wave followed by a right shock.

Points in region 4a can be reached with a left shock along the line 0D followed by
a right shock, and points in 4b by a left shock to the line EK followed by a right shock.
The line MK is the locus of the end points of the stable shock polars for right shocks
from 0D. As one approaches any point on the boundary KF between these regions, one
finds that the velocities of the two shocks used to reach this point become equal and the
two shocks become a single shock. The line KF is, therefore, part of the shock polar
determined by 0 but it is an unstable part because four physical plane characteristics
cross the shock path rather than the usual three.

If we set initial data with (p; , ¢;) at the point 0 as in Fig. 3, we may set (p, , ¢.)
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anywhere in regions 1 to 4 and still obtain a stable solution. For any given (p, , q.),
however, stable solutions are not assured for all values of (p, , ¢,). Regions 1 to 4 do
not cover the elliptic region or even all of the hyperbolic regions of the hodograph plane.

When there is no coupling between lanes (8 = 0) the densities are independent of each
other, and every point in the hodograph plane may be reached from every other point
by the solutions of two Richards-type problems. That there exist regions in the hodo-
graph plane that cannot be reached from an arbitrary point (p; , ¢:) by any allowable
combination of two shocks and or waves for 8 > 0 is due to the fact that these particular
waves cannot be extended through the ellipse.

The diagrams analogous to Fig. 3 for various other positions of the point 0, such
as above the ellipse or between the ellipse and the singular characteristic, will have
quite different forms. Whereas there was no opportunity to use the singular character-
istic in any solution sequence of Fig. 3, it does appear for some other positions of the
point 0. That one can not reach every point in the hodograph plane with an allowable
sequence of waves and shocks from 0 is, however, true for all positions of 0.

As a specific illustration of a solution of the above form one might consider what
happens when any type of bottleneck, a slow car, a road block, traffic light, ete. is
suddenly removed at time 0. Suppose, for example, that a traffic light has been red for
a sufficiently long period of time that long queues have developed in both lanes, and that
a steady flow of traffic is entering the highway from the side roads. If at time zero, the
light turns green, the initial conditions on the left of the stop-light will be represented
by some point along the right-hand boundary of the hodograph plane, and the initial
conditions to the right of the stop-light will map into a point on the upper boundary.
The solution for this type of initial data is shown in Fig. 5 and consists of a minus wave
to the singular characteristic, a wave solution along the singular characteristic and then
a plus wave, each separated by regions of constant density. This solution will be valid,
however, only until such time when the light turns red again, the queues of trafflc become

o _: o

(a) (b)

F1a. 5. The hodograph map shown by the broken line in (a) for 8 = 0.1 and the physical plane
solution (p and ¢ vs y) in (b) represent the flow of traffic immediately after a stop light turns green.
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empty, or interactions occur between the waves resulting from successive cycles of the
traffic light.

4. Other types of initial data. There are many types of initial data other than
the discontinuous type described in Sec. 3 that yield relatively simple solutions. We
consider here a few other examples. We will assume, however, that the initial data are
such that the solutions lie entirely within the hyperbolic region of the hodograph plane.
We have not been able to determine what should happen if the initial data lie partly
in the elliptic region or if the solution touches the boundary of the elliptic region at
some later time.

One simple class of solutions known as simple waves [6] arises if the image of the
initial data in the hodograph plane lie entirely along a single hodograph characteristic.
In this case, one can show that unless shocks develop the solution maps into this same
hodograph characteristic for all times and that p and ¢ are constant along the physical
plane characteristics. The velocity w of the physical plane characteristics, Eq. (4), being
a function of only p and ¢ will also be constant and to obtain w, one chooses the plus or
minus sign in Eq. (4) accordingly as the wave lies on a plus or minus hodograph character-
istic.

To construct the solution from the initial data p(z, 0), ¢(x, 0), one draws through
each point z at time 0, the straight line physical plane characteristic with the velocity
w determined by the value of p(z, 0), g(z, 0) and assigns the same p and ¢ to all points
on this characteristic. If none of these physical plane characteristics intersect, the
complete solution is thereby uniquely determined. If some characteristics do intersect,
a shock develops at the earliest time this happens and the shock path must, in most
cases, be determined numerically.

Suppose now we assume that the initial data do not lie on a hodograph characteristic
but that p(z, 0) and ¢(x, 0) are constants for z < 0 and for z = =z, with values (p, , ¢:)
and (p. , ¢.) respectively, and that for 0 < z < x, , the map of the initial data into the
hodograph plane lies on an arc between (p, , ¢:) and (p. , ¢;) which is never tangent to a
hodograph characteristic and on which z(p, ¢) is single valued. Initial data of this type
and its image in the hodograph plane are illustrated in Figs. 6(a) and (b).

To find the solution in this case one proceeds in the following way. From Eq. (3)
we calculate the values of the partial derivatives, ¢, and #, , on the initial data curve
and from these deduce which side of the initial data curve corresponds to positive times.
If one of the hodograph characteristics drawn through the point (p, , ¢:) intersects one
of the characteristics drawn through (p, , ¢.) and the intersection, (p; , gs), lies on the
side of the initial data curve corresponding to positive time, these three curves will
enclose a domain of dependence in the hodograph plane as illustrated in Fig. 6(b). Such
intersections are not always assured since the characteristics may end at the perimeter
of the ellipse without intersecting each other. If such a domain does exist, however,
the values of #(p, ¢) = 0 and z(p, g) can be determined for all points inside this domain
using the method of characteristics [10], or some alternative scheme.

This solution can be mapped into the physical plane by drawing the curves of con-
stant time in the hodograph plane. Along these curves p and ¢ may be considered as
functions of z and be plotted as such for various times. The limiting values of z and ¢
obtained as we approach the boundary of the hodograph domain of dependence from
its interior define two curves in the (r, ) plane which emanate from the points (0, 0)
and (2, , 0) and have an intersection at the value of z and ¢ corresponding to the point
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(ps , gs) in Fig. 6(b). These curves are the physical plane characteristics and define the
physical plane domain of dependence illustrated by the area Qax, , region 3, in Fig.
6(c). The solution in the hodograph domain of dependence determines the solution
everywhere in the physical plane domain of dependence.

To find the jphysical plane solutions outside the domain of dependence, we make
use of the fact described above that if the map of a physical plane solution coincides
with a hodograph characteristic, the solution is a simple wave. Since the solutions along

04 | .
" P ! p; 4 (Ps3s)
0.2 2 d "( 313
(R
0.37 2 +
3 9. q 7
q i : 21

9 0 | 0 . .(p,,q.).
0 X 0 2p4 6
(a) (b)

\'
4
2 a 5
1 3 6
0 Xo X
(c)

F1a. 6. An example of continuous initial data, together with their hodograph and physical plane domains
of dependence are shown in (a), (b) and (¢) respectively. The solutions, p and g, are constants in regions
1, 4 and 6 of (¢) and simple waves in regions 2 and 5.

Oa and z.a of Fig. 6(c) map into the hodograph characteristics, (p, , ¢.) — (ps, ¢s) and
(2, ¢2) — (ps , gs), respectively, it is possible to continue the physical plane solution
to points outside the region 3 by means of simple waves. From any point on Oa, for
example, at which p and ¢ have been found, one can draw the appropriate straight
line characteristic and assign to every point on this characteristic outside region 3 the
same values of p and ¢. This gives the solution in region 2 of Fig. 6(c). Similarly the
solution in region 5 is obtained from a simple wave originating from z,a. In regions 1, 4
and 6, p and g will be constant and have the values (p, , ¢1), (9s , ¢s) and (s , ¢»), Te-
spectively.

Since the solution in the hodograph domain of dependence can be found by means
of the method of characteristics, we can always obtain an approximate solution for this
type of initial data at least by numerical means. For certain types of initial data, how-
ever, one can also obtain the solution analytically. If p(zx, 0) and ¢(x, 0) are linear in
for 0 < z < =z, , there exist solutions of Eq. (1) having the form

Pz, ) = a() + bi(dz, oz, &) = ax(t) + b(D)z. (13)
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If one substitutes this into Eq. (1), one obtains the four ordinary differential equations

b, — 2a,b, — B(a,b, + a.b) = —da,/dt, (14a)
bg bt 2a2b2 - ﬁ(albg + a2b1) = daz/dt, (14b)
2b,(by + Bb) = db,/dt,  2by(b, + Bb,) = —db,/dt, (14¢c, d)

for a,(#), b,(?), a,(¢) and b,(¢) whose values at { = 0 are known from the initial conditions.
It is even possible to find the complete analytic solution of Eq. (14). If we divide Eq.
(14¢) by (14d), the resulting equation is homogeneous of degree zero and can be inte-
grated to give a relation between b, (¢) and b,(f). From this one can then find the solutions
b,(?) and b,(?) of Egs. (14¢, d). Substitution of this into Eqgs. (14a, b) then gives a pair of
simultaneous linear differential equations which also can be integrated.

In most cases, the solutions of Eq. (14) can not be expressed in terms of elementary
functions, but there are two special cases in which the solutions are very simple. If the
hodograph map of the initial data is parallel with the singular characteristic, b,(0) = —
b,(0), or parallel with either axis, b,(0) = 0 or b,(0) = 0, then it remains this way
b,()) = — by(2), by(#) = 0, or b,(t) = 0, respectively, for all time. The complete solutions
for these cases are given in [8].

The above solutions apply only within the physical plane domain of dependence,
region 3 of Fig. 6(c), or equivalently in the hodograph domain of dependence determined
by. the two characteristics through (p, , ¢,) and (p, , ¢.). The solutions outside these
domains are again found by using simple waves. The solutions for two examples with
b,(£) = 0 are illustrated in Figs. 7 and 8.

In Fig. 7, waves start to develop at + = 0 and x = x, at time zero. At time ¢, , p
and ¢ each show a region of constant density, a wave, a region of linearly varying density,
another wave, and finally constant density again in that order as one goes from left to
right. The waves develop at the expense of the linear region until at time ¢, , the latter

3 |

O

0 Xo X 0 ;to X

Fic. 7. The solution corresponding to the data shown for ¢ = 0 is represented by plotting p and ¢ as
a function of z for several values of the timet, = 0 < ¢, - < ¢,.
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Fic. 8. This figure is the same as Fig. 7 except that the initial data lead to the formation of shocks.
The final configuration (not shown) eventually becomes two diverging shocks.

region disappears. At time f/, , we have two waves separated by a region of constant
density (ps , ¢s), and for subsequent times the two waves continue to travel away from
each other and spread over wider ranges of .

The analogous situation but with p(x) increasing with x at ¢ = 0 is shown in Fig. 8.
At time Z, , the region of linearly varying density has vanished and at time #; we have two
waves separated by a region of constant density (ps , ¢s). The two waves, however, are
of the type that develop shocks and one of them is about to form at time ¢, . Eventually
one obtains a configuration with just two shocks separated by a region of constant
density. The constant densities are, however, determined by the intersection of the
two shock polars for (p, , ¢,) and (p. , ¢;) and are not (p; , ¢;) which are determined by
the intersection of the characteristics through (p, , ¢,) and (p, , ¢,). This final state is
achieved by means of waves traveling back and forth between the two shocks, decreasing
in amplitude and increasing in width with each trip until the densities are nearly con-
stant. The details of this are rather tedious to follow but for 8 << 1 these secondary
waves will be of very small amplitude and are almost completely absorbed each time
they overtake a shock.
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