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ON PARAMOUNT MATRICES*
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PAUL SLEPIAN
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Introduction. A paramount matrix is a symmetric matrix of real numbers such
that any principal minor must be at least as large as the absolute value of any other
minor of the same order built from the same rows. In this paper a new property of
paramount matrices is cited and proved, and some remarks are made relevant to the
problem of the synthesis of multiport resistive networks. Unfortunately, to achieve a
concise and rigorous presentation, a rather formal mathematical notation was developed,
and some of the results, although not particularly profound, may be obscured by the
mathematical formalism. Hence, a long introduction is included which describes the
results in less exact but more comprehensible terms.

After several paragraphs introducing the notation, it is shown in Theorem 9 that
if any elements in the main diagonal of a paramount matrix are increased and all other
elements remain fixed, the resulting new matrix is still paramount. The remainder of
the paper is devoted to the problem of the synthesis of multiport resistive networks.

It is well known [1] that if A is either the open-circuit impedance matrix or short
circuit admittance matrix of a multiport resistive network, then A is paramount. How
ever, it is not known whether paramountcy is sufficient for the realization of such a
network. More precisely, if A is an arbitrary** paramount matrix of order m, it is not
known whether there exists an m-port resistive network such that A is either the open-
circuit impedance matrix or short-circuit admittance matrix of this network. Tellegen
and Elias [2] have shown that the preceding statement is true if m < 3, but when m is
arbitrary, the answer to the question remains one of the leading unsolved problems.
This paper does not attempt to answer the question for an arbitrary m, but it does
indicate a technique suggested by the the preceding result which may ultimately help
to solve the problem.

Observe that an arbitrary mth order symmetric paramount matrix A has m(m + l)/2
independent elements. Thus, an m-port resistive network whose open-circuit impedance
matrix or short-circuit admittance matrix is A can be expected to contain, in general,
at least m(m + l)/2 resistive branches.

Note, however, that by Theorem 9, the set of all real numbers x such that a para-
mount matrix results when the element An of A is replaced by x, is a semi-infinite closed
interval bounded on the left. Let b be the least element of this interval and let B be the
matrix obtained from A when Au is replaced by b. Now, if there exists a resistive net-
work whose open-circuit impedance matrix is B, it is reasonable to expect that there
exists such a network with (m(m + l)/2) — 1 resistive branches since the number of inde-
pendent elements of B is (m(m + l)/2) — 1. Furthermore, if such a network is available
and a resistance of An — b ohms is introduced in series with port 1, then a resistive

*Received December 26, 1959.
**An arbitrary paramount matrix of order m is a paramount matrix with exactly m(m + l)/2

independent elements.
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network is obtained whose open-circuit impedance matrix is A. Thus, to realize A, we
need consider only geometrical structures realizing B, with (m(m + l)/2) — 1 resistive
branches. This idea can be generalized as follows.

In this paper, in Sec. 17, a number n(A) is defined for any paramount matrix A.
This number n(A) is the maximum number such that the realization of A can be achieved
by combining n(A) resistances in series or parallel with the ports of a resistive network of

[order (A)][l + order (A)] _
2

resistive branches that realizes a certain minimal paramount matrix obtained from A.
This minimal paramount matrix obtained from A is minimal in the sense that it is
irreducible as defined in Sec. 14. Thus, realization of A has been simplified to the con-
sideration of the realization of such a minimal paramount matrix by a resistive structure
with only

[order (A)][l + order (A)] _
2

resistive branches. This represents a simpler geometrical realization problem, and
because of the maximality of n(A), it is the best simplification which can be effected
by utilizing the concept described above.

It is easy to show that for any arbitrary third-order paramount matrix A, n(A) = 3.
Thus as shown by Elias and Telegen [2], any arbitrary third-order paramount matrix
A is always realizable as the open-circuit impedance matrix of a resistive network of
six branches which has three resistive branches in series or parallel with the ports and
three more resistive branches realizing the minimal* paramount matrix obtained from
A. The same geometrical structure will always produce a resistive three-port network
whose open-circuit impedance matrix is equal to an arbitrary third-order paramount
matrix A.

Unfortunately, the situation is more complicated in the case of an arbitrary fourth-
order paramount matrix. It is not true that for each arbitrary fourth-order paramount
matrix A, the number n{A) is the same. It is easy to exhibit such a matrix A with n(A) = 2
and another such matrix A with n(A) = 4. Clearly the minimal paramount matrix
resulting in the former case will have eight independent elements, while the minimal
paramount matrix resulting in the latter case will have six independent elements. This
leads the writer to conjecture that if paramountcy is indeed a sufficient condition for
the realization of a fourth-order matrix as the open-circuit impedance matrix of a re-
sistive network, the same geometrical structure will not suffice for each arbitrary fourth-
order paramount matrix A but will depend upon the number n(A). The formal math-
ematics follows.

*Consider the subnetwork of Tellegen's network which does not contain any of the three resistances
in series or in parallel with the ports; agree to call any three-branch resistive three-port network a
minimal resistive three-port, if and only if it has the geometrical configuration of this subnetwork. It
was observed by Prof. R. M. Foster of the Polytechnic Institute of Brooklyn that a third-order para-
mount matrix is realizable as the open-circuit impedance matrix of a minimal resistive three-port net-
work, if and only if the matrix is irreducible (as defined in Sec. 14).
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1. Definitions.
(i) R = {x | x is a real number}
(ii) co = {a: | a; is a positive integer}
(iii) dmn / = [x | for some y, (x, y) e / }
(iv) rng / = {a; | for some y, (y, x) e / }
(v) / | A = / n {{x, y)\ x e A)
(vi) If a; e co, then

(x) = co n {y | y < a;}

(vii) pA = the cardinal number of A.

2. Definitions.
(i) For each x t co

Sx = jw | m is an increasing sequence with 1 < pu and rng u C (#)},
(ii) For each x t co and i e (x)

Si = Sx \v\iftmgu}.

3. Definitions.
(i) M = {A | A is a function, dmn A = ((m) X (m)) for some mt co and rng A C } •
(ii) If A e M and (i, j) t dmn A,

Ait- = A(z, j).
(iii) If A e M, order (A) = (p dmn A)1/2.
(iv) K = M r\ {A | A,-, = A,( for (z, j) e dmn A and 2 < order (A)}.
(v) For m e co,

Mm = M C\ {A\m = order (A)}.

(vi) If A e M, det (A) is the customary determinant of the square matrix A.
(vii) If A e M and det (A) 5^ 0, then A""1 is the customary inverse of A.

4. Definitions.
If U E SX,

[u * a:]

is that increasing sequence of positive integers such that

dmn [u. * x] = {x — pu)

[u * x]x = inf ((a:) — rng u)

[u * x]i = inf ((a:) — rng u — rng([w * a;]|(i — 1)))

for i e (x — pu) and i ^ 1.

5. Definitions.
(i) For A e M

G(A) = (S°TdeHA) X Soti'rU)) r\ {{u,v)\tm = pv}.

(ii) For A e M and i e (order (A))
(?i(A) = (j(A) H (STietlA) X Sold°tU)).
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6. Definitions.

For A e M and (u, v) e G{A)

A" is that element of Morder<A)_I"

such that

(4"),,- = A([u * order (A)],- , [t> * order (A)],-)

for

(i, j) t ((order (A) — pu) X (order (A) — pu)).

7. Definition.

A is paramount if and only if A e K and

det (AZ) - |det (A;)| > 0
whenever (u, v) e G(A).

8. Definition.

If A e M, x e R and i t (order (A)), then

[A, i, x]

is that element of M0ldel'A) such that

[A, i, x]ik = Ajk

if (j, k) e dmn A and (j. k) ^ (i, i).

[A , i, x]u = x.

9. Theorem.

Suppose that A is paramount and that i e (order (A)}. Let

B = i, x] is paramount}.

Then B is a closed, semi-infinite interval, bounded on the left.
Proof.

Let 0 < t e R. It suffices to show that [A, i, An + <] is paramount. Pick any
(u, v) e Gt{[A, i, An + t]).

It suffices to show that

det ([A,i, Ati + *]») > |det ([A, i, Au +

Suppose first that

pu = pv — order (A) — 1.

In this case

det ([A, i, An + VQ = A{i + t.

Also, if i f. rng v, then



1960] ON PARAMOUNT MATRICES 267

det (fA, i, A,-,- + £]") = Ai{ + t\
while if i t rng v, then

det ([A, i, An + <]") = A,-,-

for some j e (order (A)} with j ^ i, and paramountcy of A implies the desired inequality.
Thus, assume now that

pu — pv < order (A) — 1.

Since u t $°rder(4)) { e rng [M * order (A)]. Let 11 dmn [u * order (A)], such that

[u * order (A)]< = i.

Suppose now that i je rng v.
Let j t dmn [v * order (A)] such that [v * order (A)],* = i. Then

det ([A, i, A,,- + W = —f+1t det (([A, i, A;< + + det (A",).
Clearly there exists (u, v) t G(A) such that

([A, i, A{i + = Al
Thus,

det ([A, i, An + t]t) = -l'+7tdet (A*) + det (A").

Note that the above equation is valid when u = v and I = j. Hence, the fact that A
is paramount implies

det ([A, i, An + *]") - |det ([A, i, An + <]")|

> t det (Al) + det (A3 - (t |det (A|)| + |det (AT)|)
= f(det (Al) - |det (A?)|) + (det (A"„) - |det (A:)|) > 0.

Finally, if i e rng v, then

det ([A, i, An + £]") = det (A"),
and

det ([A, i, An + t]l) - |det ([A, i, Au + <]")|

= 2 det (Al) + (det (A"J) — |det (A")|) > 0.
The proof is complete.

10. Definition.

B is a reduction of A if and only if A is paramount, and

B = [A, i, mi {t \[A, i, t] is paramount}]

for some i t (order (A)) such that

An > inf {2 | [A, i, t] is paramount}.
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11. Definition.
P is a reduction sequence of A if and only if A is paramount, and P is such a sequence

that
Pi — A

and
P, is a reduction of P,_i for 1 < it dmn P.

12. Remark.
It is clear from Definitions 10 and 11 that if P is a reduction sequence of A, then

pP < order (.A).
13. Remark.
Suppose that T is such a sequence that

(i) For i e dmn T T{i) is a sequence to M.
(ii) T*(l) is a reduction sequence of A.
(iii) (T(i))vTM is non singular for each i t dmn T.
(iv) T(i + 1) is a reduction sequence of [(T(t))„r(0]_1 for each i t dmn T such

that (i + 1) e dmn T.
Then, clearly, by Jacobi's theorem, whenever i e dmn T and (i + 2) e dmn T,

pT(i + 2) < pT(i) < order (A).

Thus a sequence T satisfying the above conditions must be finite.

14. Definition.
A is irreducible if and only if A is paramount and there exists no B such that B is a

reduction of A.

15. Definition.
T reduces A completely if and only if A is paramount and T is such a finite sequence

that
(i) For i e dmn T T(i) is a sequence to M.
(ii) T(l) is a reduction sequence of A.
(iii) If 1 < pT then (T(i))TT(i) is non singular for i t (pT — 1).
(iv) If 1 < pT then T(i + 1) is a reduction sequence of [(2T(i))J.r(o]~1 for

i t (pT — 1).
(v) (T(j3T)pTlvT) is irreducible and singular, or, 1 < pT, and {T(pT))vTivT) and

(T(pT — l))j>r(i>r—i) are both irreducible.

16. Remark.
If T reduces A completely, then T is maximal in the following precise sense.
Theorem.
Let T reduce A completely and let U reduce A completely such that T C U. Then

T = U.
17. Definitions.

(i) If T reduces A completely,

n{T, A) = Z ?T(i).
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(ii) If A is paramount and A is not irreducible,

n(A) = sup {n(T, A) | T reduces A completely}.

If A is paramount and irreducible n(A) = 0.

18. Remark.
It is not known whether the following statement is true:
if T reduces A completely and U reduces A completely, then

n(T, A) = n(U, A).

19. Remark.
If A is paramount, the number n(A) defined in 17 (ii) may be relevant to the problem

of the realization of A as either the open-circuit impedance matrix or the short-circuit
admittance matrix of a resistive network. This topic is discussed in the Introduction.
Clearly, if 18 is true, the computation of n(A) will be greatly simplified, and thus de-
termination of the validity of 18 may be of help in the ultimate solution of the realization
problem.
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