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QUASI-TRIDIAGONAL MATRICES AND TYPE-INSENSITIVE
DIFFERENCE EQUATIONS*

BY

SAMUEL SCHECHTER
Institute of Mathematical Sciences, New York University

1. Introduction. In solving linear partial differential equations by finite difference
methods a boundary value problem is reduced to solving a set of linear equations.
In such instances the matrix involved usually takes a special form and consists mainly
of zeros. Many of these matrices fall into the class to be considered here which may
be called quasi-tridiagonal matrices. That is, we consider partitioned matrices of the
form

~MX E1 0 ■ • • 0

D2 M2 E2 0 • • 0

Q = 0 D3 M3 E3 0 • • 0 = [Dn , M„ , En][ , (1.1)

0 • • • 0 !>«,_,

_ 0 • • • 0 Da Mq .
where the D„ , Mn , En are matrices with the same number of rows, En , Mn+l , Dn+2
have the same number of columns, and the Mn are square. We propose to solve

Qv = g (1.2)
by direct methods.

Various discretizations lead to matrices of this type. That the usual finite-difference
approximation of certain boundary problems for the Poisson and the bi-harmonic
equation yield matrices of the form (1.1) has been shown by 0. Karlqvist [4], A. F.
Cornock [2], L. H. Thomas [8] and others [6, 7]. Whereas the usual method of solution
of the resulting linear equation is by iteration these authors propose direct methods
for solving the above problems.

The processes described here are, in part, extensions of those described by Karlqvist
[4] and Cornock [2]. Furthermore it is shown that the finite difference equations obtained
from symmetric positive systems, as defined by K. O. Friedrichs [5], also fall into
the class of matrices of the form (1.1). These include, in addition to pure elliptic or
hyperbolic equations, a certain class of boundary problems for equations of mixed
type such as the Tricomi equation. Where iterative methods for such problems seem
to present difficulties, even when Q is positive definite and symmetric, the direct methods
for solving (1.2) are shown below to be feasible for this larger class of problems.

A criterion is given for the process to apply which is similar to that found for the
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LDU theorem [3]. It is also shown that when the M„ have the same order p, and the
Dn are easily invertible, then the process may be reduced to multiplication of matrices
and the inversion of one matrix of order p. This last fact was noted by Cornock [2]
for the Poisson and bi-harmonic case.

More generally, if for r = 1,2, • • • ,k]k<q, and for integers qr such that 1 < qx <
q2 < • • • < qk = q, q0 — 0, the matrices M„ , for qr-l < n < qr , all have the same
order pr then it is shown that the process may be reduced to multiplications and the
inversion of k matrices of orders Pi , • ■ • , ph .

A code to solve (1.2) has been written by Max Goldstein for the I.B.M.-704 at
New York University and this code has been successfully applied to a symmetric positive
problem for the Tricomi equation.

This code has also been applied to solving pure elliptic problems to compare the
direct method with iterative methods. The direct method was used, for instance to
solve the bi-harmonic boundary problem of a simply supported rectangular slab. A
comparison of running time would indicate that the direct method is considerably
faster than iterative methods for this type of problem.

2. Direct methods. We seek a reduction of Q to the form

Q = LU, (2.1)
where L and U are square matrices, partitioned in the same manner as Q, of the form

L = [C„ , In , 0]? , (2.2)

U = to, An , En]i , (2.3)
where J„ is a unit matrix of the same order as Mn . We also partition the column vectors
v and g in the same manner.

v = 9

(h

L g,JL1V

Comparing right and left hand sides of (2.1) we set, for 1 < n < q,

Ai = Mi , Dn = CnAn, Mn = CnE+ An .

If the An are non-singular, the A„ and C„ may be obtained recursively from

An = Mn- DnA-\En^ , A> = Ml (2.4)

Cn = DnA~n\ , 1 < n < q. (2.5)

To solve for v let Uv = y, then Ly = g; y and v may then be obtained recursively from

Un = gn - Cn2/n-i 1 < n < q, (2.6)

where

Vx = 01 , and

vn = A~\yn - Envn+j) 1 < n < q, (2.7)
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where

Vq Aa ya .

We will refer to this recursive method (2.4)-(2.7) as an LU-process. It should be
noted that this process requires the inversion of Ai , A2 , ••• , AQ and their storage
for use on the "backward sweep" (2.7).

In certain cases most of these inversions may be avoided. For instance, if all the
matrices Mn are of the same order p and the D„ are easily invertible, we may premul-
tiply Q by the quasi-diagonal matrix

0
d;1

d:1

o d;
We may thus assume that Dn = I, 2 < n < q. If we let An = H~i1Hn then the LU-
process becomes

Hn = Hn-xMn - Hn.JEn-i 2 <n<q, (2.8)

where H0 = I, Hx = ;

Hn-Ayn - fi0 = , 2 <n < q, (2.9)
where ^ = (/! and Hava = H^iyQ .

If we let un = Hn-iyn then from (2.9)

un = Hn—iffn - «„_! , 1 < n < q, (2.10)

where ux = gl . To obtain the vrl we go back to the original equation (1.2) whence

Vn-i = gn — Mnv„ — Envn+1 , 1 < n < q - 1 (2.11)

where y„_i = gq — Mava and vQ is solved from

HqV, = . (2.12)

We have, in this case, only one matrix Ha of order p to invert.
This recursion (2.8)-(2.12) will be called an H-process. This method may be used,

for instance, in solving problems for the Poisson or bi-harmonic equations over a rectangle.
In the case of Poisson's equation the q inversions of the LU-process are reduced to
solving only one set of p equations where p is the number of mesh points on a horizontal
line. This fact was noted for these equations by Cornock [2] in specific examples.

For regions which are made up of rectangles a similar result may be obtained. For
instance, in solving Poisson's equation for an L-shaped region made up of two rectangles
Ri , R2 each having p, , p2 points on a horizontal mesh line, respectively, only two
matrices of order pt and p2 need be inverted.

To treat the general case let us assume that for 1 < gi < q2 < ■ • • < qk = q, <Zo = 0
the Mn have the same order pr for gr_! < n < qr . The matrix Q can then be partitioned
again by combining those M„ having the same order. That is, let



288 SAMUEL SCHECHTER [Vol. XVIII, No. 3

Q = [D'n ,M'n , E'n]\ ,

where

D'r+1 =

0 + l

0 1 < r < k,

Lo o
M'r+1 = [Dn , Mn , EX::i , o < r < k

0 0"

E'r+1 =

0
0 ••• 0.

, 0 < r < k — 1.

The L//-process can be performed for this new form for Q. Let g'r , y'T, v'r, 1 < r < k
be corresponding column vectors of dimension pr repartitioned as Q, where, for instance,
we denote

v'r+1 = • , 0 < r < k.

-V,

Let y[ = g[ , y'2 = g'2 — C'2y[ where D'2 = C'2A[ . If we let

v'x = Mw[ (2.13)
w[ may be obtained by an //-process for (2.13). If we denote the H matrices that enter
here by Z?i , • • • , HQl then only Hai need be inverted and

2/2 =

i + l ^at + l^ai

Thus it is seen that only the last vector component wai of w[ is needed and the reverse
sweep given by (2.11) may be omitted. It will also appear later that only wQl and //"'//„_!
need be saved for future use. (It should be noted that where an H process is used the
D matrices in M'n are assumed to be non-singular and that this process is feasible only
if these D's are easily, if not explicitly, invertible.)

To obtain y'3 we must compute A2 , which would generally require the inversion
of A[ . This however is not the case here. Since if we decompose A[ by the method of
(2.1), (2.2), (2.3) into A[ = LJJ, then a straightforward computation shows that

D^A'J-'Ei = DiUT'LT'E I = DQl+1H~1lHQl-iE„l 0 ••• 0"

.0 0 • • • 0.
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Thus A'2 differs from M'2 only in that Mai+i is replaced by

MQl+1 - DQl+1H'a]HQl_1Eai .

That is A'2 is also of the form (1.1) and has all of its M matrices of the same order p, .
We are therefore reduced to the previous case. We may proceed in this manner until
all the y'r , 1 < r < k have been computed and we note that v'k = w'k . In this last com-
putation, of course, (2.11) will have to be used to get all of v'k .

To obtain the other v'r we note from (2.7) that, for r < k,

v'r - w'r - (A'r^E'rV'r + 1 = W'r ~ Z'r ,

where we let z' be the solution of

Mz'r = E'v'r+1 . (2.14)

If the last vector component vQr of v'r would be known the other components would
be obtainable from the original equations as in (2.11). Since

0

E'rv'r+1 =

0

__EtrvQ,+u

if follows from (2.10) and (2.12) that if an //-process were carried out for (2.14) then

Zqr H Qt — \EqTVqr + \ j

where //^//0r_! is the matrix that entered in the computation of wQr . Thus if these
are saved from before, the remaining v'r are obtained without any further matrix in-
versions.

Assuming therefore that the work to invert the D-matrices in the M'n is negligible
we see that for a problem involving k sets of M-matrices of equal order only the k matrices
H, Z/q3 , • • ■ , Hat need be inverted. Thus in solving Poisson's or the bi-harmonic
equation over a region made up of k adjoining rectangles the inversion of at most k
relatively small matrices is required. A similar statement applies in higher dimensions.

We note that in the particular case where Q is the discrete Laplacian, where Mn = J,
n = 1, 2, • • • , q, Dn , En are identities and J = [1, —4, 1]* , the inverse of H„ can be
given explicitly [4]. If we denote the allied Chebyshev polynomials by

, , , sinh (q + l)x „ ,
K(a) = sinh x ' 2 C08h * = a'

then Hq = hJJ). The eigenvalues of J and II,, are given by

Xm = 2 cob ^ — 4, m = 1,2, • • • , p,

respectively, and the matrix of normalized eigenvectors is

\p + 1/ I, p + lj4,m_i
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If we let

L = , • • • , K{K)}
be a diagonal matrix then

H'1 = GL-'G.

For large problems the Ha may be ill-conditioned. For the above problem the P-
condition P(HQ), or ratio of largest to smallest eigenvalue of IIa is

P(TI) rs^ 7r sinh 6 (ff ~f~ 1) 

(p + 1) sinh 6 -sinh

so that this may get quite large for large q = p. The inversion of H„ may then present
severe difficulties. It may however be feasible to break the problem into k groups as
indicated above even though all the Mn have the same order.

Since (2.11) represents a marching process there is also the possibility of severe
loss in accuracy in the value of for large q. The value of p does not appear to be an
important factor in this loss for the discrete Laplacian problem. In the cases tried for
q = 5, a 704 code yielded results accurate to at least five significant digits for values
of p = 5, 10, 20, 40.

3. Criterion for decomposition. A sufficient condition for the validity of the de-
composition is similar to that given for the LDU theorem [3]. Let

Q.-M,, 0.-($£).-.

Qk = [Dn, Mn , E„]i , , Q, = Q.
If Qi , Q2 , • • ■ , Q„ are non-singular then the decomposition (2.1)-(2.3) exists, and

is uniquely given by the recursion (2.4), (2.5). In this case det Q — JIl-i det Ak and if
the Mk all have the same order and D2 , • • • , Da are non-singular then det Q = det H„ .

The proof follows easily by induction. From the Schur-Frobenius formula

det Qa+1 = det Q. K
LR Mq+1.

= det Qa -det (Ma+1 — RQ^K)

where R = (0 • • • 0 Dq+1), K =

0

LEJ
'A:1 * If/:

0

From the inductive hypothesis

q:1 =

L0
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so that RQ~XK = DQ+1A^EQ and det Qa+1 = det Q,-det ^40+1 . This implies that
is non-singular and also proves the formulas for det Q.

A sufficient condition for Qi , • * • > Q„ to be non-singular is, clearly, that for all u

yuTQu > uu (3.1)

for some non-zero constant y.
4. Applications. We consider, as an application of the above processes, the problem

of solving a certain boundary problem for the Tricomi equation1

Tu = yuxx - uvy - j{x, y) = 0 (4.1)

by a difference approximation given by Friedrichs [5]. These difference approximations
for symmetric positive systems have been further investigated by C. K. Chu [1].

The problem for (4.1) is posed for the parallelogram

P: | y — x | < t, | x | < r\ t, r > 0 (4.2)

such that

Tu = 0, (x, y)tP (4.3)

ux + uy = 0 for | x — y | = t, | x \ < r (4.4)

uy — 0 for x = — r, \ y — x | < t. (4.5)

No condition is specified on x = r.
Since the treatment given by Friedrichs calls for a rectangular region, P is trans-

formed by £ = x, y = y — x into the rectangle

If I < r, | v I < t (4.6)
and the equation (4.1) is written as the system

y 0
0 1

v( - y i

l l
Vv = (4.7)

where y = £ + y, v = (v1 , u2)T, vx = ux , v2 = uy . It is shown in [1] and [5] that after
a premultiplication of (4.7) by a suitable two by two matrix of the form

P y

1 P.

(4.7) and its boundary conditions can be brought into the required symmetric positive
form. That is (4.1), (4.4), (4.5) can be written in the form

l(a^£ + avn + (aV){ + (aV),) + kv = g, (4.8)

where for a constant e

pya1

y p.

p = 1 + ey, (4.9)

'A subscript of x, y, £ or 17 indicates partial derivative.
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(4.10)(1 + p)y p + y

. P + y 1 + p.

pf9 =
'./J

K = + «',) = i
1 + ey €

(4.11)

(4.12)

As is shown in [1] and [5] the boundary conditions can be written in the form

Pv = nv, (4.13)
where

py V= —a1, p. = —al =
2 y

y --P

for £ = — r, (4.14)

/3 = a£, m = at = a£ for £ = r (4.15)

i3 = —c', p. - —al for q = —t where (4.16)

1
p — 1

2p2 — 2/(p2 + 1) (1 + p)(p — 2/)

(1 + p)(p — 2/) p2 — 2y + 1 .

0 = a\ /t = a! for r, = t. (4.17)

To obtain the difference equations we divide the intervals (—r, r), (—t, t) by the
2p — 1, 2q — 1 points,

= (i - p) At, 1 < i < 2p - 1, 1 < p, (4.18)
Vi = 0' - q) At/, 1 < j < 2q - 1, 1 < q, (4.19)

respectively, where p and q are odd integers and

, - 1 ' " g - 1
are the respective interval lengths.

According to [5] an equation is written only for the pq odd numbered points (£< , ij,),
i = 2m — 1, j = 2n — 1, 1 < m < p, 1 < n < q. If we write i;,-; = v(£,• , 17,), =
«*(£» > V,) and similarly for the other variables then the difference equations are given
for an interior point 1 < m < p, 1 < n < q, by

2^ (^l + l.l^t+2,1 &»-l , ~f~ 2j^ (^» ,i + lV i , J +2 — ~f" KtjVij (Jij , (4.20)

where h = 2 A£, fc = 2 A17.
For a boundary point at least one of the subscripts i ± 1, j ± 1 falls outside the

range prescribed. In that case the a and v of the corresponding term are both evaluated
at that boundary point and then replaced according to the rule (4.13). The 2h and/or
the 2k in the difference involved are also replaced by h and/or k, respectively.



1960] QUASI-TRIDIAGONAL MATRICES 293

As an illustration we consider the equation for the point (£1 , rj,), not a corner:

| ^ (oii.i+iVi,i+2 ~ «i,/-ifi,#-2) + KijVu = gu . (4.21)

For the corner point , ijx), j, 2k, aJ.f-M.y.-j are replaced by 1, fc and (ck!.)iiJ;u ,
respectively in (4.21). The other types of boundary points are treated in a similar manner.

Since each (m, n) yields one equation we obtain pq equations in the pq unknowns
Vn , or 2pq scalar equations for 2pg scalar unknowns. For each of the equations we
note that v{i appears with at most four of its neighbors vi+2,i , Vi-2,j , vt,,_2 vi%i+2 • If
we set v— Vn and denote by vn the vector with 2p scalar components arising from the
points (£,• , ihn-i) on a horizontal line, the difference equations take the form

dlvl 1 + anmvnm~i + blvl + cX+1 + eliC+1 = g"m (4.22)

1 < m < p, 1 < n < q.

This system can be written in the form (1.1), (1.2) where

Mn = [<C , bl , <£]* „ ,

Dn = [0, dl , 0]pm,! ,

En = [0, el , 0]:=1 ,

v = 9 =

Lv J

and where for 1 < m < p, 1 < n < q

l g

1 . 1
dl 2k ^m 2h^i

&n n 1 £
m Ki'j ) C"m ^+1. 7

n   1 rj n  
w 2^ ^. 1+1 > t/ ™ y»i

For the boundary points n = 1, <7, 1 < m < p,

dm — 0, d„ — —^ ai,2o-2

and for ra = 1, p, 1 < w < g

eL = = 0

n A 1 J
dl Uj dp Qt2p—2,j

^ A
Ci — , 0^2,/ > cp — 0.
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For m = 1, p, 1 < n < q,

bi Kij ^ , bp ^ Otij

and for corner points

bm Kij ^ («-).■/ j m lj M 1,

bm "j- ^ (Xij ^ (<x-)a ) wi p, n 1,

bl = ku - | (al)„- + | (a'),-,- , m = 1, n = g,

bl = /c.-i + | a?,- + | (a!.),-,- , m = p, n = q,

where in all cases i = 2m — 1, j = 2n — 1.
Thus this boundary problem for the Tricomi equation yields a matrix of the form

(1.1). It has been shown by Chu [1] that, if e, r, t are properly chosen, e.g., e = 1/2,
r = 1/2, t = 1/5, this matrix satisfies the inequality (3.1). The Lf7-process is therefore
applicable. Since the M„ all have the same order we may in fact use the //-process
providing the D„ are non-singular and easily invertible. The Dn are quasi-diagonal,
and a simple computation shows that for the above choice of e, r, t, a" is non-singular.

The above mentioned code was used to solve the problem described above for the
choice of

f(x, y) = 6yx - 4y2 + y - 1 - 2x

and was run for various values of p and q. The solution to the analytic problem (4.3)-
(4.5) can be given explicitly by

u(x, y) = (y — x)2(% -fa;) — x/25 (4.23)

and for (4.8)-(4.17) it is given by

= v - nil + 20 - 1/25, (4 24)
v2 = ^(1 + 2£).

For the case ofp=15, g=15 the code yielded an answer accurate generally to
three significant digits. The values given at 7(0, 0), 77(1/2, 0) by the code are illustrated
by Tables I, II respectively:

V X q
Vi

I
v2

3X3 5X5 7X 13 11 X 7 15 X 15
-6.22 -4.07 -4.02 -4.27 -4.04

-0.37 0.08 0.01 -0.04 - 0.01
X 10"

Vi
II

V2

-7.13 -4.96 -4.34 -3.99 -3.99
X 10"

-1.01 0.54 0.14 - 0.21 -0.05

The exact solution given by (4.24) for ri = 0 is = — .04, v2 = 0.
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Other problems for the Tricomi equation were run to check the influence of the
positivity and boundary conditions. In one case the two by two premultiplier matrix,
needed to guarantee "positivity," was omitted. Again an approximate solution was
obtained with a slight loss in accuracy. For instance the value at I given by the code
was Vi = —.0454, v2 = —.0019, for p = 11, q = 7.

A problem for the homogeneous Tricomi equation with inhomogeneous boundary
conditions (jj. — I3)v = /, for a given /, also yielded results similar to those given above.

Symmetric positive systems for dimensions higher than two may be treated in a
similar manner.

As is pointed out in [2] and [4], problems for the bi-harmonic equation can also be
put into the form (1.1). The L [/-method was carried out for a simply supported rec-
tangular plate and was found to give results accurate to about three significant digits
for a 30 by 30 mesh. The running time for this problem was about an hour on the IBM-704.

The above methods may also be combined with iterative or group relaxation methods
where each individual group relaxation is done by a direct method. This has already
been proposed for a multigroup diffusion problem by Nohel and Timlake [6].

It may also be noted that, in problems where higher order difference schemes are
available, the direct methods will require relatively little additional operations and
thus one may require fewer mesh points in a given problem.
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