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FURTHER PROPERTIES OF CERTAIN CLASSES
OF TRANSFER FUNCTIONS*

BY

ARMEN H. ZEMANIAN
College of Engineering, New York University

Abstract. Some previously defined classes of rational transfer functions are extended
to transfer functions that need not be rational. Several additional properties of these
types of functions are then developed. Finally, bounds on certain derivatives of the unit
impulse responses corresponding to such functions are shown to exist.

1. Let Z(s) denote the transfer function of a system and let Wif) be the response
of the system to a unit impulse applied at time t = 0. Then Z(s) and W(t) are related
by the Laplace transform.

Z(s) = [ W(t) exp (—st) dt. (1)
Jo

It will be assumed henceforth that W(t) and its derivatives are integrable in any finite
interval. The transfer function Z(s) is a function of the complex variable, s = <r + ju.
Since Wit) is a real function for physical systems, the complex singularities of Z(s)
occur in complex conjugate pairs.

In a recent series of papers [1, 2, 3] a number of properties were established for
certain classes of rational transfer functions. One of the objects of this paper is to remove
the restrictions that Z(s) be rational. This will require a more general form for the defi-
nitions of the classes of transfer functions. Let Z(s) be analytic for <r > 0 and let it be
asymptotic to K/sk as s approaches infinity where K is a positive constant and k is
a positive integer. In the special case where Z(s) is rational, we have

Z7/_\ -fjr S dn—lS ~f~ * * * "I" Cto
m = K »- + lw- + ■••+!>„ ®

k = m — n > 0. (3)

As noted above, W(t) assumes only real values. Consequently, all the coefficients in (2)
must be real.

Returning to the general case where Z(s) need not be rational, let Za(s) denote the
following successive integrations of Z(s).

Z„(s) = f dsa-1 f dsq-2 ••• f Z(s0) ds0 . (4)
J« J a q — i J a i

Only the principal branch of this multivalued function will be needed. In fact, it will be
sufficient to assume that the arbitrary paths of integration in (4) never enter into the
region defined by a < < 0 where <r, is the largest real part among the singularities
of Z(s). Under this restriction, (4) can be considered a single-valued function.
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Also, let the real and imaginary parts of some subsequently needed quantities be
denoted by

S = a- + jco, (5)

= <r« + i<o„ , (6)

Zfa) = fl(») + (7)
zQfr) = RM + (8)

The following relations may then be obtained from (4). For q odd,

r„(») = (-i)<°+i)/2 rr d«a_2 ■■■ rimo)
Ju Ju q—x *Ju I

and, for q even,

Rafa) = (—1)°/2 f do3„-! f doi„-2 ••• f R(u0) du0 . (10)
J 0) J « Q— 1 V (ill

7?0(oj) and I„(co) are even and odd functions of w, respectively [2; lemma 2].
We may now state the following definition.

Definition 1. A junction Z(s) will be called a class k junction ij the jollowing conditions
hold.

(a) Z(s) is analytic jor a > 0.
(b) Z(s) ~ K/sk as s —> where K is a positive constant and k is a positive integer.
(c) Z4_!(s) is a positive real junction in the halj plane, a > 0.

A function is said to be positive real if its real part is nonnegative for a > 0 and
if it assumes only real values along the real axis [4].

A certain subclass of each class k will be required in the following discussion. The
definition of this subclass is again a generalization of the previously given one [2] in
that the condition that Z(s) be rational is dropped. Furthermore, R(oi) and dl/dw are
now allowed to assume the value of zero at co = 0.

Definition 2. A junction Z(s) will be called a subclass k junction ij conditions (a) and
(b) in Definition 1 hold and ij the jollowing condition holds.

(c') For k odd, R{co) has k — 1 changes oj sign jor — °° < o < °° and R(w) is positive
in the neighborhood oj w = 0; jor k even, /(co) has k — 1 changes oj
sign /or — oo < co < co and dl/dw is negative in the neighborhood oj co = 0.

It has been shown formerly [2; theorem 2] that all subclass k functions are class k
functions. Even with these more general definitions, the previously given proof applies
in precisely the same way. Furthermore, all the theorems in Part II of Ref. [2] and in
Ref. [3] continue to hold since their proofs did not make use of the rationality of Z(s).
(Theorem 6 of Ref. [3] must be modified slightly if it is to apply in this case.)

One particular result [2; theorem 9] that the unit impulse response corresponding
to any class k function must satisfy is

i w(*>1 £ vr=irr
The principal objective of this paper is to show that the following bounds exist on a
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number of the derivatives of those W(t) corresponding to subclass k functions. In par-
ticular, for k > 2

I I < (Jfc -7-1)! (i2)
where the integer n is restricted by 0 < n < (k — l)/2 if k is odd and by 0 < n < k/2
if k is even. In developing this result, some new properties of the subclass k functions
will be obtained.

2. The following lemmas will be needed.

Lemma 1. Let F(s) satisfy conditions (a) and (b) of Definition 1. Then, for k odd,
2?(co) must have at least k — 1 changes of sign in — <» < o < co and, for k even, I(co)
must have at least k — 1 changes of sign in — °° < co < °°.

The proof of this lemma has been given previously [2; lemma 3]. It applies in the
case where F(s) is not rational since the rational property was not invoked anywhere
in its proof.

Lemma 2. Let k be even and let Z(s) be a subclass k function. Then sZ(s) is a subclass
(k — 1) function.

Proof. By condition (c'), 1(a) has k — 1 changes of sign in — co < co < co. Since
1(a) is an odd function [2; lemma 2], one of these sign changes occurs at co = 0. Now
the real part of sZ(s) equals — co/(co) and, consequently, it has (k — 2) sign changes in
— oo < co < c°. Since dl/dw is negative in the neighborhood of co = 0, — co/(co) is
positive in the same neighborhood. Thus, — co/(co) fulfills condition (c')- Conditions
(a) and (b) are also fulfilled by sZ(s) so that the lemma is established.

Theorem 1. Let k > 3 and let Z(s) be a subclass k function. Then,

G(s) = £ s0Z(s0) dsn (13)

is a subclass (k — 2) function.

Proof. The theorem will first be established in the case where k is odd. Denoting
the real part of G(j'co) by i?0(co), we have

Ra(co) = — J co0i2(co0) du0 . (14)

Since sZ(s) is analytic for <r > 0 and since Z(s) = 0 (1/s*) as s —> <», (14) assumes the
value of zero when the lower limit is set equal to — °o. Hence,

R(j(co) = / u0R(co0) dco0 . (15)
J — co

Integrating (15) by parts, the value of Rg(oi) at co = 0 may be expressed as

Rq(0) = ~ J dcoi J R(u0) tfcoo .

Because Z(s) is a subclass k function, R(oi0) dw0 will have k — 2 changes of sign in
— co < w < one of which is at the origin. Hence,
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/« putdoii / i?(co0) do30 (16)
-CO J — CO

will have fc — 3 sign changes in — «= < w < . It follows that, since R(u) is positive
in the neighborhood of co = 0, (16) is negative at co = 0 so that Ra(0) is positive.

Now consider the case where fc = 4? — 1 {v = 1, 2, 3, ■ • •)• The quantity wS(co) and,
consequently, R0(ui) become ultimately positive as « decreases indefinitely toward
— °=. Hence, for Ra(fl) to be positive, Ra(w) can have only an even number of sign
changes in — <» < w < 0. However, uR(co) has (k — l)/2 sign changes in — < co < 0
and this is an odd number. Since integrating according to (15) can never increase the
number of sign changes in — co < w < 0, 220(co) must have less than (fc — l)/2 sign
changes in — co < co < 0. Moreover, by lemma 1, 720(co) has at least (k — 3)/2 sign
changes in — °o < co < 0. Thus, Z20(co) has exactly (fc — 3)/2 sign changes in
— OO < CO < 0.

This result coupled with the facts that Ra(co) is even and Rg(0) is positive shows
that G(s) satisfies the requirements of condition (c'). Conditions (a) and (b) are also
fulfilled so that G(s) is a subclass (fc — 2) function.

A similar argument may be applied in the case where k = 4y -f 1 (v = 1, 2, 3, • • •)•
Now let k be even. As before, it can be shown that 7ff(w) is given by

/G(co) = / co0/(«0) dw0 . (17)
J —oo

This quantity is continuous and an odd function of co. Hence, /<?(0) = 0. Also, its de-
rivative is negative in the vicinity of co = 0 since 7(co) has this property and 7(0) = 0.

Since Z(s) is a subclass k function, co7(co) has (k — 2)/2 changes of sign within the
interval — <» < w < 0. Let co,- be a point where 70(co) changes sign. Since 7G(co) is related
to co7(co) according to (17), 7c(co) must have a smaller number of changes of sign in
— co < co < co,- than co7(co) does. Furthermore, the point co = 0 is a point where 70(co)
changes sign so that 70(co) has no more than (k — 4)/2 changes of sign in — co < oo < 0.
Hence, invoking Lemma 1,70(co) has exactly this number of sign changes in — co < co < 0.
It follows that G(s) is a subclass (k — 2) function. This completes the proof.

Theorem 2. Let Z(s) be a subclass k junction where k > 2. Also, let n be any integer in
the range 0 < n < (fc — l)/2 if k is odd and let n be any integer in the range 0 < ju < k/2
if k is even. Then s"Z(s) is a class (fc — /u) function.

Proof. If a function F(s) is a class fc function, then the quantity (— 1 )hdhF/dsh is a
class (fc + h) function. This result is an immediate consequence of the definition of a
class fc function.

Let fc be odd (fc = 2v + 1; v = 1, 2, 3, • • •)• To establish the conclusion, it will be
shown that the function,

n CO n CO /»CO

/ <&„_! / 2 • • • / SoZ(sB) ds0 , (18)
J s J 8)1 — 1 J *1

is a class (fc — 2m) function where 0 < n < v = (k — l)/2.
Consider the innermost integral of (18). Integrating by parts repeatedly we may

write
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^ SoZ(so) dso = s"'1 £ s0Z(s0) ds0 + (p — 1) J s?~2 ds, £ s0Z(s0) ds0

= s"'1 J s0Z(s0) ds0

rt" /»00

+ (p — l)s""3 J ds! J s0Z(s0) ds0

I (/X 1)(m 3) J S2 ds2 J* Si dsi J* s0Z(s0) dso •

Continuing this process of integrating by parts the last term in this sum, the following
result may be obtained. For p odd,

[ SoZ(So) ds0 = s""1 f s0Z(s0) ds0 + • • •
(19)

4- (p 1)(m 3) • • • 4-2 / S(„_i)/2 dstn-D/2/ • • I SoZ(s0) dso
J a J at

and, for p even,

£ SoZ(s0) ds0 - s""1 s0Z(s0) rfs0 + • • •

~t" (m 1)(m 3) 3 • 1 • I ds„/2 / ds^/2-1 • • • / s0^(so) cfeo •
J s J Sp/a *1

Repeatedly integrating in the above manner, (18) may be rearranged'into the following
finite sum.

/*» /»co -co

/ ds,,-! / 2 sSZ(so) rfs„
^ a •/ s fi — 1 J 81

= / I &H-2 dSp-2 * * * I SQZ(So) dSo
J 8 J 8/1 — 1

/*00 /*<» /»oo -00

+ I ds„ / / s„_2 ds^—2 • • • / s0Z(s0) cte0
J 8 Jap J 8p — i «/»!

/»o° /»oo -00 -co -C» -00

~f- ̂ 4.2 I dsM+1 I dsM I dSp-1 I ds^-2 f ^n-z ds^-3 • • • I
J 8 *8(1+1 J a II Jap — x vSfi—% *8\

+ ••• .

In this expression, all the A,- are positive integers.
Now Theorem 1 may be applied repeatedly to each term on the right hand side of

(21) to show that each term is a subclass (k — 2p) function. That is, working from the
innermost integral outward, Theorem 1 indicates that, when the integrand possesses
the factor s, each integration yields a function of some subclass and the order of the
resulting subclass is reduced by two from the order of the subclass of the initial function.
Moreover, when the integrand does not have the factor s, each integration produces a
subclass function whose order is reduced by one. Consequently, each term on the right
hand side of (21) is a subclass (fc — 2p) function and, hence, a class (fc — 2p) function.

Furthermore, if F(s) and G(s) are class k functions and if A and B are positive

(21)
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numbers, then it follows from the definition of the class k functions that AF(s) + BG(s)
is also a class k function. Therefore, (21) is a class (k — 2/z) function and, by the remarks
in the first paragraph of this proof, s"Z(s) is a class (fc — n) function.

The same result may be established in the case when k is even, {k = 2v;
v = 2, 3, 4, • • . Lemma 2 states the theorem in the case when k = 2.) The same pro-
cedure as used before may be applied to the expression,

/ / cfeM-3 ••• SoZ(s0) ds0 , (22)
J 8 J Sf| — 2 J «1

to show that it is a class (k — 2n + 1) function where 0 < ju < v = k/2. In this case
(22) is rearranged into the following finite sum.

/ S:.... 2 ds^-2 / s„_3 ds^s • • • / s0Z(s0)
J s J S/1—2 J Si

n 00 n CO -CO

~f* I dSft—i I Sfj-2 c?sm_2 * * * I ^o^(so)
J 8 J 8 H~ I

dsn

n 00

rfs0

rfS0+ B2 / / ds„_2 / sm_3 £fe„_3 s0Z(s0)
Js/I — X Jsfi — 2 J Si

+ ••• .

In this expression, the are all positive integers. Moreover, each term is a subclass
(fc — 2/x + 1) function by the same argument as before. Hence, (22) is in class
(k — 2fi + 1). Differentiating it ^ — 1 times and multiplying by (— l)"-1 will produce
a class (k — n) function. This completes the proof.

3. The principal conclusion of this paper may now be stated.

Theorem 3. Under the hypothesis oj Theorem 2,

Ww{t) \ <K ^ '(k — n — 1)!
Proof. The transfer function Z{$) is asymptotic to K/sk {k > 2) as s —> oo. Hence,

by the initial value theorem [5; theorem 15, p. 267], the corresponding unit impulse
response W{t) and its first k — 2 derivatives all have an initial value of zero. Thus, for
the stated ranges of m, s"Z(s) is the Laplace transform of Ww(t) [5; p. 129].

Finally, it has been shown [2; theorem 9], that the unit impulse response correspond-
ing to a class k function is bounded according to (11). Consequently, the conclusion
follows immediately from Theorem 2.
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