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THE UNIQUENESS QUESTION FOR WAVES
AGAINST AN OVERHANGING CLIFF*

BY

R. SHERMAN LEHMAN

1. Introduction. For the problem of three-dimensional waves over sloping beaches
Roseau [11] and Peters [10] have found explicit solutions for all slope angles. These
solutions are in the form of integrals in the complex plane resembling those obtained in
the inversion of the Laplace transform. It is not, however, clear that all solutions satis-
fying appropriate conditions can be represented in this way, and indeed in general the
uniqueness question is still open. The purpose of the present paper is to study the unique-
ness question in a particular case.

The problem of surface waves over sloping beaches when treated by the linearized
theory leads to the question of determining a velocity potential $(x, y, z, t) which is a
solution of Laplace's equation in the space variables x, y, and z and satisfies two different
boundary conditions on different parts of the boundary. Suppose the z-axis is taken
along the shore, the y-axis is directed vertically upward with the free surface at y — 0,
and the a;-axis is directed outward from the shore. Then on the free surface y = 0, x > 0

d2<J> ,
W+9Ty==0'

where g is the acceleration due to gravity. On the bottom the normal derivative
d<P/dn = 0. For a uniformly sloping beach with angle ra between the surface and bottom,
the bottom is given by the equation 6 = — ira, when x — r cos 6, y = r sin 6, r > 0.
If a — I the "bottom" becomes a vertical cliff, while for § < a < 1 the "bottom" becomes
an overhanging cliff. Our considerations here will be primarily concerned with the case
a = 3/4.

Restricting consideration to motion which is simple harmonic in the time t and the
space variable z, one seeks solutions of the form

y, z, t) = ip(x, y) cos kz cos (at + 0).

Progressive waves having crests which at infinity make an arbitrary angle with the
shore line can be constructed by taking linear combinations of standing waves of this
type.

With an appropriate choice of units of length and time so that <r2/g = 1 one obtains
the following mixed boundary value problem: Find the solutions of the equation

A<p(x, y) - k2<p(x, y) = 0 (1.1)

in the sector — < 6 < 0, satisfying

I2 - <p = 0 for 0=0, (1.2)dy
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and

fe = 0 for 6 = -ira. (1.3)dn

Roseau [11] and Peters [10] have found solutions for this problem for k < 1 and all
angles ira < x. Roseau [12] has also studied solutions for angles xa < ir/2 when k > 1.
Some of these solutions, which include the Stokes edge waves, have been considered also
by Ursell [15]. The question of determining all solutions of the boundary value problem
satisfying appropriate conditions at infinity and at the origin has been studied by Stoker
[13] and Weinstein [17] for 0 < k < 1 in the case a = 1/2. (See also [14, p. 84].) A proof
of uniqueness for a = 1/4 can be constructed by using Roseau's special investigation
of that case [11, pp. 27-30] together with Stoker's and Weinstein's methods. In this
paper we shall use similar methods to handle the case a = 3/4.

For k = 0 the waves are two-dimensional. In this case solutions for all angles were
found earlier by Isaacson [4]. Stoker [13] has treated the uniqueness question for a = 1/2n.
Brillouet [1] has studied the uniqueness question for a = p/2q following the line of Lewy's
original investigation [6]. A uniqueness proof for all a < 1 for k = 0 can be constructed
using the methods and results employed by Lewy in [8].

The present investigation was begun with the aim of finding out the true situation
with regard to uniqueness for k > 0. There is no possibility of answering the question
for all angles by the method used here, and even the case of all angles xp/2g, which in
principle probably could be handled by the methods employed here, seems uninvitingly
complex. One can hope, however, that knowledge of a few special cases may help in
guiding a general consideration using methods similar to those employed by Lewy
[7, 8, 9] and the author [5].

2. Reduction to a simpler boundary value problem. We wish to determine for
a = 3/4 all solutions of the boundary value problem (1.1)—(1.3) which have continuous
second derivatives in the sector — 371-/4 < 6 < 0, r > 0 and satisfy two additional
boundedness conditions. At infinity we shall require that

<P I + dip
dx +

dip
dy < M for r > R0 , (2.1)

where M and R0 are some positive constants. Near the origin we shall assume that

<p I + dip
dx +

dip
dy

< Cr~7/3+e, (2.2)

where C and e are positive constants. Observe that (2.2) allows <p to have a logarithmic
singularity at the origin but excludes solutions which behave like r~i/3 at the origin.

Because the normal derivative of ip vanishes on d = — 3x/4 , the function <p can be
extended by reflection to the sector — 3x/2 < 6 < 0. In the larger sector ip will again
satisfy the conditions (2.1) and (2.2). Similarly, since dip/dy — ip vanishes on 6 = 0,
it can be extended by reflection to the sector — 3x/4 < 6 < 3x/2. The resulting func-
tion dip/dy — ip is multiple-valued when considered as a function of x and y, but it can
be considered as a single-valued function of r and 6. It satisfies the following two relations
uniformly in d:
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— <p = 0(1) for r —» oo , — fx < 9 < fx

^ = 0(r~7/3+e; for r -» 0, -fx < 9 < fx.dy ~ ~

(2.3)

Since the function ^ is symmetric with respect to the line 9 = — 3x/4 and dp/d?/ —
^ = 0 for 9 = 0, we conclude that d<p/dx — <p = 0 for 9 = — 3x/2. Define

- i)Q| - ^,y). (2.4)
The function ip is then a solution of the differential equation A\p — k2\p = 0 for — 3x/2 <
0 < 3x/2 because the differential operators involved have constant coefficients. Also
\p = 0 for 9 = 0 and for 9 = — 3x/2. Thus ^ is a solution of a much simpler boundary
value problem.

The method we employ is first to solve this boundary value problem for and then
use (2.4) to determine <p by the solution of ordinary differential equations. Finally we
must verify that the <p obtained is a solution of (1.1)—(1.3) and satisfies the boundedness
conditions (2.1) and (2.2).

It is possible for all a = p/2q with p odd to perform a similar reduction to a problem
with vanishing boundary values for a sector with angle 2-ira. This simpler boundary
value problem can be solved, (see Brillouet [1]) but since for larger p and q the differential
operator used in the reduction is more complicated, the determination of <p from the
solution of the simpler boundary value problem presents difficulties.

We first use (2.1) and (2.2) together with the following lemma to derive bounds
for \[/ at the origin and at infinity.

Lemma 1. Let Ri be an arbitrary positive number. Let u be any solution of Au — k2u = 0
existing in a circle of radius d < RY about (x0 , y0) and let Mi be the supremum of u inside
this circle. Then

f(x„)2/„)+ fy(x0,y0) < ; M<L d '
where L is a constant dependent only upon the differential equation and the number R, .

This lemma is a special case of known theorems. In particular it is a special case of
results of Gevrey [3, p. 148] and it also follows from the Schauder interior estimates
as stated by Douglis and Nirenberg [2].

We now use the lemma together with (2.3) to obtain estimates for ip at infinity and
at the origin in the sector — 3x/4 < 9 < 3x/4. For the estimate at infinity we use a
circle of radius 1 about the point (x, y). For the estimate at the origin we use a circle of
radius r/2 about the point (x, y). We find that the following estimates hold uniformly
in 9:

i(x, y) = 0(1) for r -> co, -fx < 0 < fx, ^ ^

$(x, y) = 0(r~w/2+') for r -> 0, -fx < 9 < fx.

In the following discussion it will sometimes be convenient to consider ^ as a function
of r and 9. To avoid possible confusion we set

•*(r, 0) =i(x,y).
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Since <p is symmetric with respect to the line 0 = — 3tt/4, the function <p in view of
(2.4) also must be symmetric with respect to 0 = — 37r/4. In other words

*(r, 0) = tf(r, - fir - 0). (2.6)

By reflection across the line 0 = 0 we obtain

*(r, e) = -*(r, - 0). (2.7)
Combined with (2.6) this yields the information that ^ is a periodic function of 0 with
period 3tt. For any fixed value of r the function ^ can therefore be expanded in a con-
vergent Fourier series which because of (2.6) and (2.7) must have the form

^(r, 0) = X c»(r) sin f(2n + 1)0, (2.8)
n = 0

where the coefficients c„(r) are given by

c„(r) = 7T~ [ V(r, 0) sin f(2n + 1)0 dd. (2.9)
«J7T J-3,/4

The function ^(r, 0) satisfies the partial differential equation

d2* . 1 d* . 1 d2* j2t .H z—I—5 — kr = 0.dr r dr r 86

Differentiating (2.9) and using this differential equation, we obtain

c"(r) + ~r c'Jj) - \jt2 + (2n + 1)| Jc„i(r)

= — g~2 J (§(2w + 1))2^J sin f(2n +1)0 dd.

The right side of this equation is equal to zero, as can be seen by integrating the first
term of the integrand by parts twice and using the fact that ^ = 0 for 0 = 0
and d^/dd = 0 for 0 = — 37r/4. It follows that the function c„(r) is a linear combination
of modified Bessel functions of order 2(2n + l),/3 that is

c»(?) = -4«-^2(2n + l)/3(kr) + B„K2(2n+l)/a(kr) , (2.10)

where A„ and B„ are real constants.
Next we use the estimates (2.5) to prove that all of these constants except B0 and Bx

are equal to zero. For p —> °° over positive values the following asymptotic relations hold
(see [16, p. 202]):

7,(p) ~ (2irp)~1/2e",

/ \ 1/2 (2-11)

yy

Inserting the first estimate of (2.5) into (2.9) and letting r —> <», we conclude that
A„ = 0 for n = 0, 1, 2, • • • . Also for p —> 0 over positive values

K,(P) = 0(p"), (2.12)
when v > 0 [16, p.77-78]. Hence the second estimate of (2.5) when combined with
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(2.9) allows us to conclude that Bn — 0 for n = 2, 3, 4, • • • . Thus we find

y) = B0K2/3(kr) sin §0 + B1K2(kr) sin 26, (2.13)

where B0 and Bl are real constants.
3. Solution of ordinary differential equations. In Sec. 2 we proved that if <p(x, y)

is a solution of the boundary value problem (1.1)-(1.3) satisfying the boundedness
conditions (2.1) and (2.2), then the corresponding function xp (x, y) determined by
(2.4) must have the form (2.13). In this section we shall prove that corresponding to
each function \p of the form (2.13) there is at most one function <p satisfying (1.1)—(1.3),
(2.1) and (2.2), thus establishing that for each k > 0 there is at most a two-parameter
family of solutions of our problem. The method employed in this section is essentially
integrating ordinary differential equations.

We shall need the following lemma.

Lemma 2. Suppose u(x, y) is a solution of the differential equation Aw — k2 u = 0
in the strip a < x < b, — <*> < y < <». Suppose also that there is a constant C2 such that

u I + d2u
+

du
dy < C2 (3.1)dx

jor y > y0 , a < x < b. Then the junction

U{x, y) = e" f e~'u(x, t) dt
J +00

is a solution of the same differential equation in the same strip.

Proof. By differentiating we obtain

AU - k2U = e" 0 + (1 - k2)u(x, <)] dt + u(x, y) + ^ u(x, y),

as is easily justified in view of (3.1). Transforming the integrand by using the differ-
ential equation and then integrating by parts, we obtain

AU — k2U = e" J e~'(u — dt + u(x, y) + ^ u{x, y)

=«■/."■■"(! -1) dt-°-
The inequality (3.1) insures that the boundary terms at the limit + <» vanish.

Now let us make a cut along the positive y-axis of the x, y plane and restrict 6 to the
range — 3ir/2 < 6 < -w/2. In this way for given values of B0 and Bx in (2.13) we obtain
a single-valued function tp(x, y) defined in the entire cut plane. Let

vix, y) = - 1 jv»(®, y) (3.2)

so that v is a solution of the equation

{iy ~ ^ = ^X' yS)' (3-3)
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Integrating we find

v(x, y) = e"g(x) + e* f e"^(x, t) dt = e"g(x) + v*(x, y), (3.4)
J CO

where g is a function of x alone. By Lemma 2 v*(x, y) is a solution of the differential
equation (1.1) for — oo < x < 0, — °° < y < °° and also it is a solution for 0 < x < oo,
— oo < y < oo. As we shall see, v*(x, y) is discontinuous on the entire y-axis. Since the
function v is also a solution of (1.1), eyg(x) must be a solution, i.e.

g"{x) + (1 - k2)g(x) = 0 (3.5)

for the intervals — °° < x < 0 and 0 < x < oo. We shall denote by gi(x) and g2(x)
the analytic functions of x coinciding with g for x < 0 and x > 0, respectively.

By (2.11) t) is exponentially small for x2 + f large. Consequently for x —* + oo
with y fixed

v(x, y) = e"g2(x) + o(l).

Also by (3.2) and (2.1) we know v(x, y) = 0(1) for x —* + 00. y < 0. When k < 1, this
does not impose any additional condition on g2(x); but if 7c > 1 among the solutions of
(3.5), ai eklX + a2 e~kiX with fcj = (k2 — 1)1/2, we must reject all those for which ax ^ 0.
Hence we obtain the additional condition

gm = -kl8M, h ~ 1)1/2, (3.6)

which must be satisfied in order to obtain a <p satisfying (2.1). Similarly for k = 1 we
must have ^(O) = 0. Thus (3.6) must be imposed for k > 1.

Next, solving (3.2) for <p{x, y) in the lower half plane, we obtain

<p(x, y) = exh(y) + e* [ e"v(t, y) dt (3.7)
J oo

By an argument using Lemma 2 with x and y interchanged one can show that the second
term on the right hand side is a solution of the differential equation (1.1) for y < 0.
It follows that for y < 0

h"(y) + (1 - k2)h{y) = 0.

By (1.2) we must have dtp/dy — ip = 0 for y = 0, x > 0. For all y < 0 we have

- <p = e'(h'(y) - h{y)) + e' J e"(j^ ~ y) dt

= e\h\y) - h{y)) + e* f e~^{t, y) dt.
J CO

Keeping x fixed > 0 and taking the limit for y —> 0 , we conclude that we must have

h'(0) - h{0) = 0.
Since, as we have seen, v{t, y) = 0(1) for t —» + , we obtain from (3.7)

<p(x, y) = eh{y) + 0(1)

for x —» + 00 with y fixed. To have <p bounded as required by (2.1) we must have A'(0) =
h(0) = 0, and hence by the differential equation h(y) = 0 for all y.
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The boundary condition (1.3) also must be satisfied. For y = x, x < 0 we have, in
view of (3.2) and (3.8),

1/2 dtp _ dtp _ dtp
dn dx dy

= [*>0, y) + v(x, y)] - JV J e 'yP(t, y) dt + tp(x, ?/)J
= v(x, y) - ex [ e~'rp(y, t) dt (since $(t, y) = f(y, t))

J CO

(3.9)

= g{x)e, by (3.4).

Consequently we must have gi(x) = 0 for all x.
Since v and dv/dx must be continuous across the negative y-axis, we must have for

y < 0

ff2(0) = lim f e~'\p(x, t) dt — lim f e~'^(x, t) dt,
x-*0~ J 00 x-*0+ J co n ^0 10)

6*2(0) = lim f e ' —■ dt — lim f e
X—*0~ j CXJ OX 3;_»0+ J 00

- f it.dx

The function g2(x) is uniquely determined by g2(0) and g^O) since it is a solution of the
differential equation (3.5). In the next section we shall establish that these limits exist
for every function f of the form (2.13) and are independent of y. Without further work,
however, we can conclude that if there is a solution corresponding to 4it is given by
the formula

tp{x, y) = eI+" f e-'gify dt + eI+" f f e_,"TiA(r, t) dt dr, (3.11)
J CO J CO J CO

where

- (° if "<0
if x > 0.

Observe that by (3.10) and (3.11) <p is uniquely determined by ^ and also that the
dependence is linear. From (2.13) we see that for each k > 0 there are at most two
linearly independent solutions of the boundary value problem satisfying the conditions
(2.1) and (2.2). In fact, for k < 1 Roseau [11] and Peters [10] have found two linearly
independent solutions, one of which is finite at the origin, and the other of which has a
logarithmic singularity there. If one used their work, to complete the proof that for
each the formula (3.11) represents a solution of our problem, one would only need to
verify that their solutions satisfy the conditions (2.1) and (2.2). However, we shall not
do this, but instead we shall give a proof which is independent of their work. At the
same time we shall complete the study for k > 1, where it turns out that (because of
(3.6)) there is only one linearly independent solution of the problem and it has a log-
arithmic singularity at the origin.

To summarize, we have proved that for each ip of the form (2.13), if the limits (3.10)
exist, then the function <p(x, y) given by (3.11) is a solution of the boundary value
problem (1.1)-(1.3). In the next section we show that the limits (3.10) exist and at the



278 R. SHERMAN LEHMAN [Vol. XVIII, No. 3

same time evaluate them explicitly by using Bessel function formulas. Then in the last
section we study the behavior at infinity and at the origin of <p(x, y) as given by (3.11)
and in doing so verify that it satisfies the conditions (2.1) and (2.2).

4. Evaluation of some limits. We shall use the formula (see [16 p. 388])

r ooib ,K Q dt = _7[_ smh v/3
Jo sinw sinh (3

valid for 0 < v < 1, Re cosh /3 > —1, — tt/2 < Im cosh /3 < tt/2. It follows that

/; e-'Kv{kt) dt = 7-^ (4.1)k sin vir sinh /3

for 0 < v < 1, 0 < k < co, cosh /3 = 1/k with 0 < Im cosh 13 < x/2. More precisely,
if k — 1, then /3 = 0; and the ratio sinh v/3/sinh /3 is defined to have the value v. For
k > 1, 13 is complex and therefore sometimes it may be more convenient to use the
alternative expression

7r sin vy
k sin vk sin y

with cos 7 = 1/k, 0 < 7 < tt/2.
To abbreviate, we introduce a limit operator S defined by the equation

5/ = lim f(x, y) - lim f(x, y)
x—0+ x—»0 —

for any function / for which the limit exists. Then (3.10) becomes

g2(0) = 5 f e~'^{x, t) dt,
Jv (4.2)

9t(fi) = 8 J e~' ̂  ip(x, t) dt

provided the limits exist. We shall prove that these limits do exist for every y < 0 and
are independent of y. Throughout this section we shall assume that y < 0.

We investigate separately the contributions due to each term of ^ as given by (2.13).
In each case in the following discussion where we obtain a limit of an integral by passing
to the limit under the integral sign, this can be justified by the Lebesgue dominated
convergence theorem. First we have

5 [~ e~'K2/3(k[t2 + x2]1/2) sin f 6 dt
J V

/;

Using the formula

= ]o e-'KUkt) [sin (x/3) - sin (-*)] dt = |sil^^/3)-

32 K0(kr) = § K2(kr) sin 26dx dy ' 2

and integrating by parts, we find

L, = 5 e"K2(k[t2 + x2]1'2) sin 26 dt
Jy
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-8 /.' b" tLk°w + *"]'">dt
= 5 f" W e" fx Ko{k[e + X']Ui) dL

Also (see [16, pp. 79, 80])

£K0(kr) = -y Mkr) = + xp(f),

where there is a constant C such that for 0 < r < °°

| p(r) | < C(1 + | log r |).
Consequently

L' = —81 j?e~' x2 + edt + 5 + x^dL

The second term is 0 since the limit of the integrand is 0 for x —* 0. The first term can
be evaluated by introducing r = t/x as a new variable of integration. Since y < 0, we
obtain

Lt - -S f ^e~' 2 T .2 dt = —4 lim f 6 2 dr
Jy K X + t K J.-.0+ Jv/x 1 + T

4 f" dr _ 4 7T~ ~¥ 1 + T2 ~ ~V

From the formula (see [16, p. 79])

zK'M + vK,{z) = -zK,.x(z)

one can derive the following identity:

(K,{kr) sin v6) = (K,(kr) cos vd) — kK,^(kr) sin {v — 1)0.ox oy

Using this identity and the fact that 2£_„(z) = K,(z), we obtain

5 J°e- ^ {K2/3(k[t2 + xT2) sin§0} dt

= 5 j\" ft {K2/3(k[t2 + x2]U2) cos|0} dt

+ 5 [ ke~'K1/3(k[t2 + x2\1'2) sinp dt = U + L3
J y

The limit L2 can be evaluated by first integrating by parts and then passing to the
limit under the integral sign to obtain by (4.1)

L2 = j e 'K2/3(kt) [cos (7r/'3) — cos (—7r)] dt =
31/27t sinh f/3

k sinh /3
Also

L3 — k r e-'KUkVt2 + x2) [sin (x/6) - sin (—tt/2)] dt = 31/27rSmh [0{S)
Jo sinh p
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We have

L4 = 5 f e~' (K2{k[t2 + x2]'/2) sin 26) dt
J y UX

= 8/."¥a+ «-]'"))

= 5 f Ko(.k[t2 + X2],/J) df.

Since K0(kr) is a solution of A/£0 — /c2-K'o = 0, we obtain

L4 = S J~ 2e"K0(k[t2 + z2]1/2) dt - S J" ^ K0(k[t2 + a;2]172) dt

= 5 I (2 ~ ^)e"K^ + = °>
since the limit of the integrand is the same for x —* 0+ as it is for x —> 0~.

Thus

<>•«>■>-B>1 ^rr~B4

where cosh j3 = 1/fc, Re /3 > 0, 0 < Im (3 < jr/2. It is easily verified that the coefficients
of B0 in these expressions never vanish.

When combined with (3.6) these formulas establish that for k > 1, B0 is determined
uniquely if Bx is given. For example for k = 1 we must have B0 = 0. Thus for k > 1
there is at most one linearly independent solution satisfying the conditions (2.1) and
(2.2).

5. Behavior at infinity and at the origin. We now investigate the behavior at infinity
and at the origin of <p(x, y) as given by (3.11), (2.13), (4.3), and (3.5). We begin by
estimating

v*(x, y) = e" f e~V(z> 0 dt (5.1)
J aa

(see (3.4)). If <p is any one of the functions given by (2.13) and p is an arbitrary positive
number, then there is by (2.11) a corresponding number cx such that

| \p(x, y) \ < Cie~kr for r = (x2 + y2)l/2 > V• (5.2)

(It is necessary to omit a neighborhood of the origin because of the singularity of K„
there). For y > 0, x2 + y2 > p2 we obtain

I v*(x, y)\ <e" f" c,e-a+iu dt < e~k\ (5.3)

For y < 0, x2 + y2 > p2, x ^ 0 we write

v*(x, y) = e" J e~'\p(x, t) dt + e" J e~'tf/(,x, t) dt = Tx + Ti . (5.4)
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By the results of the last section we know the integral in T1 approaches a limit as x —> 0+
and also approaches a limit as x —* (T. Furthermore by (5.2) the integral in Tl approaches
0 as | x | —> . Hence there is a number c2 such that | ?\ | < c2e".

For the second term T2 we have by (5.2)

| T2 | < c,e* f dt
I *-v

which is less than or equal to

cle" <Jk-Dm ,
I Jc - 1 I 1 +e 1

for k ^ 1 and is less than or equal to

Cie"(| y [ + p)

for k = 1. In either case, if we define

k for k < 1

M = ]1 — v for k = 1

1 for k > 1

with t) an arbitrarily small positive number, then there is a constant c3 independent
of x and y such that | T2 | < c^e"". Combining this estimate with that for | Tx | and (5.3)
we find

| v*{x, y) | < Cje-"1"1 for x y* 0, x2 + y2 > p2. (5.5)

Since for y < 0,

<P&> y) — ex+v f e~'g(t) dt + e* f e~'v*(t, y) dt,
J CO J CO

we obtain immediately

<p(x, y) — ex+" f e~'g(t) dt < c4e"".
J CO

For k < 1 with k2 = (1 — k2)1'2 we have

g2(t) — gM cos k2t + Klg'2(0) sin k2t,

and hence for x > 0

e1 e~'g(t) dt = ^ J ^ {-(g2(0) + gi(0)) cos k2x ^ ^

+ (k\g2(0) — g'2(0))k2l sin k2x},

while for x < 0 since g(f) = 0 for t < 0,

J e~'g(t) dt = ex J e~'g2(t) dt = ^ J ^ (g2(.0) + gr^O)). (5.8)

If k > 1, assuming (3.6) is satisfied, we have
92 (<) = g2(0)e~k,t,
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where fci = (k2 — 1)1/2. Hence for x > 0

* £ e-'g(t) dt = (5-9)

while for x < 0

e* f*e-'g(t)dt = (5.10)

Thus we see that for y < 0, t/) is bounded outside a neighborhood of the origin
for every function ^ given by (2.13) in case k < 1; and the same is true for k > 1 provided
(3.6) holds.

To study the behavior on the free surface y = 0 it is desirable to use a better estimate
for v* there. By (5.2) for x > p we have | \p(x, <)| < cle~kx. It follows that | v*(x, 0)| <
c1e~kx and hence for y = 0 the right side of (5.6) can be replaced by c1e~kz/(k + 1).
Equation (5.7) then shows that for k < 1, <p(x, 0) approaches a sinusoidal wave
as x —» + oo. Similarly for k = 1, <p(x, 0) approaches a constant as x —* + oo , the con-
stant being — gt(0). For k > 1, <p(x, 0) = 0(e~klX) as x —* + 00.

To complete the verification that condition (2.1) is satisfied we must verify that
| d<p/dx | and | dip/dy | also are bounded. By (3.2), (3.4), and (3.8) we have

~ = <p(x, y) + v(x, y) = <p(x, y) + e"g(x) + v*(x, y),dx (5.11)

= <p{x, y) + ex J y) dt = <p(x, y) + v*(y, x)

since \p{y, t) — \p{t, y). The boundedness then follows in view of the estimate (5.5) for v*.
Next we study the behavior of <p near the origin. In view of (2.13), it is convenient

to consider separately two different functions \p,

to(x, y) = K2/3(kr) sin (20/3),

y) = ■| K2(kr) sin 20 = K0(kr),

and obtain estimates for the corresponding functions v* and v*.
We have

v*0(x, y) = e" ['" e~'K2/3(k[x2 + i2]1/2) sin (20/3) dt = 0(1)
J oo

for all x and all y < 0.
On the other hand,

v%x, y) = e" £ e"' ~ K0(k[t2 + z2]1/2) dt

= £ K0{k[x2 + y2]W2) + e" £ e- £ K0(k[t2 + x2]1/2)

= £ K0(kr) + 0(1)

dt
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for x2 + y2 —> 0, y < 0, as can be seen by the argument used to evaluate Li in the previous
section. Hence

e1 £ «"*(*> y) dt = B^ fm e" §i + 2/2]1/2) dt + 0(1)

= K0(kr) + ez f e"K0(k[t2 + y2]m) dt + 0(1)
J CO

= K0{kr) + 0(1)

for x2 + f/2 —> 0. Hence we obtain

*(*, y) « | BiK0(kr) + 0(1)

for r —■» 0. Thus if = 0 we obtain a solution which is finite at the origin; if Bx 0
the solution will have a logarithmic singularity at the origin.

To complete the verification of the condition (2.2) one uses (5.11) to estimate the
derivatives.

In summary, for k < 1 there are two linearly independent solutions satisfying the
conditions (2.1) and (2.2). One can be taken to be finite at the origin. The other then
has a logarithmic singularity there. At infinity for y — 0 both of these solutions have a
sinusoidal form. On the other hand for k > 1, there is only one linearly independent
solution satisfying the conditions (2.1) and (2.2) and it has a logarithmic singularity at
the origin. For k = 1 with y = 0 this solution approaches a constant for x —> + °°;
for k > 1 the solution dies out exponentially as x —> <*>. In every case the solutions die
out exponentially as y —» — <».

Bibliography

1. G. Brillouet, Etude de quelques problemes sur les ondes liquides de gravity, Publ. Scientif. Tech.,
Ministere de l'Air, Paris, No. 329 (1957)

2. A. Douglis and L. Nirenberg, Interior estimates for elliptic systems of partial differential equations,
Communs. Pure Appl. Math. 8, 503-538 (1955)

3. M. Gevrey, Sur la nature analytique des solutions des equations aux dArivtes partielles, Ann. ficole
Norm. 35, 129-190 (1918)

4. E. Isaacson, Water waves over a sloping bottom, Communs. Pure Appl. Math. 3,11-31 (1950)
5. R. S. Lehman, Developments in the neighborhood of the beach of surface waves over an inclined bottom,

Communs. Pure Appl. Math. 7, 393-439 (1954)
6. H. Lewy, Water waves on sloping beaches, Bull. Am. Math. Soc. 52, 737-775 (1946)
7. H. Lewy, Developments at the confluence of analytic boundary conditions, Univ. of California Publi-

cations in Mathematics, 1, 247-280 (1950)
8. H. Lewy, The development of functions associated with surface waves over an inclined bottom, Tech.

Rept. No. 26, ONR Contract Nonr-225(ll), Appl. Math, and Statist. Lab., Stanford University,
1954

9. H. Lewy, On linear difference-differential equations with constant coefficients, J. Math, and Mech.
6, 91-108(1957)

10. A. S. Peters, Water waves over sloping beaches and the solution of a mixed boundary value problem for
A<p — k2<p = 0 in a sector, Communs. Pure Appl. Math. 5, 87-108 (1952)

11. M. Roseau, Contribution d la thiorie des ondes liquides de graviti en profondeur variable, Publ. Scientif.
Tech., Minist&re de l'Air, Paris, No. 275 (1952)



284 R. SHERMAN LEHMAN [Vol. XVIII, No. 3

12. M. Roseau, Short waves parallel to the shore over a sloping beach, Communs. Pure Appl. Math. 11,
433-493 (1958)

13. J. J. Stoker, Surface waves in water of variable depth, Quart. Appl. Math. 5, 1-54 (1947)
14. J. J. Stoker, Water waves, Interscience Publishers Inc., New York, 1957
15. P. Ursell, Edge waves on a sloping beach, Proc. Roy. Soc. A214, 79-97 (1952)
16. G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge University Press, 1944
17. A. Weinstein, On surface waves, Can. J. Math. 1, 271-278 (1949)


