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THE STOKES FLOW ABOUT A SPINDLE*
BY

. W. H. PELL AND L. E. PAYNE**
(National Bureau of Standards, Washington, D. C.)

I. Statement of the problem for an axially symmetric body. The Stokes flow of
a viscous, incompressible fluid about a body is defined by the assumption that inertial
effects are negligible in comparison with those of viscosity, or, more precisely, that the
Reynolds number of the flow is small. In the case in which the flow is two-dimensional
or has radial symmetry, the introduction of a stream function and the Stokes assumption
together with the no-slip boundary condition on the body and an appropriate assumption
at infinity, yields a boundary value problem which has been solved in a number of
instances. See Dryden, Murnaghan and Bateman [1], pp. 295-312 and the references
of [2].

In the axi-symmetric case a body (or configuration of bodies) having an axis of
symmetry is immersed in a flow which has a uniform velocity parallel to the axis of
symmetry. It is then reasonable to suppose that the resulting flow pattern is identical
in all planes through the axis of symmetry. If we introduce cylindrical coordinates
(x, r, 6) into the flow space, where x(— <*> < x < oo)is measured along the axis of sym-
metry, r(0 < r < oo) normal to this axis, and 6(0 < d < 2x) is measured with respect
to an arbitrary plane through the axis of symmetry, then 0 plays no further role in our
analysis because of the axial symmetry. Now let the velocity of the fluid be u(x, r) =
(ux{x, r), uT(x, r)) and introduce a stream function ^(x, r) by the equations

1 W 1 d* ,i nux = , uT = — -— (1.1)rdr r dx

By a well-known procedure (Payne and Pell [2]; Milne-Thomson [3], pp. 521-523) the
differential equation to be satisfied in the region of flow D is found to be

where
L-it = 0, (1.2)

+ if (1.3)dx dr r dr

Let the trace of the boundary of the body in a meridional plane be C (Fig. 1). Then
the condition of vanishing velocity on C can be stated in the form

i = 0

? = °an

(1.4)
on C,

(1.5)

where n is the unit normal to C exterior to the body.
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If the uniform velocity of the flow at infinity is u = (U, 0), then ^ must satisfy the
condition

lim i = \r2U + O(p), (1.6)
p—»co

where

p2 = x2 + r2. (1.7)

II. Representation of the solution. It is expedient to define a second stream function
by the relation

\p = %Ur~ — ■ (2.1)

We then find that 4*1 must satisfy the equation

Ll^i = 0 (2.2)
in D, subject to the conditions

= Wr2, (2.3)

^ - Vr f , (2.4)dndn

on C, as well as the condition that give rise to a vanishing velocity at infinity.
Following Weinstein [4], solutions of

T . , d2V d2V k dv n . .Lk(v) = —2 + —2 H— — = 0 (2.5)dx dr r dr

k real, are known as generalized axially symmetric potentials, and denoted by \pk. Payne
[5] has shown that in certain regions any solutions of the repeated operator equation
(2.2) can be represented as a linear combination of any two of the functions

a) r2\p3, b) xr2 \p3, c) p2r2\j/,

d) r2ip1, e) r4^5.

In a previous paper [2] the authors have used this theorem to obtain the solution of
certain problems in Stokes flow; it will be used here to obtain still another.

III. The flow about a spindle. We introduce bipolar coordinates (|, i?) into the
{x, r) plane by the transformation

z = ib cot (f/2), (3.1)
where z = x + ir, f = £ + it], and b > 0 is a constant. In terms of the (£, ij) coordinates

x =   5sinh   p =  bsinS  (o o)
cosh r) — cos |' cosh rj — cos £ '

where — °° < r\ < <» and 0 < % < %. We define a spindle to be an object whose surface
is obtained by revolving the curve £ = £0(0 < £o < x) about the x axis. This curve is
the arc lying in r > 0 of the circle which passes through (±6, 0) and has its center at
(0, —b cot £0). The surface of the spindle is thus £ = £0 and the region of flow
D isO<£<£0,—°o < n < co (Fig. 1). It is advantageous in considering flow about
the spindle to choose | and ?? as independent variables.
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r

Fig. 1.

Using the results of [5] we represent the solution of (2.2) in the form

h = rV1 + (p2 - &W- (3.3)
It is not difficult to see [6] that any ^2"+1(f, jj) which is even in rj may be expressed in
the form

^2n+1 = (cosh 7/ - cos£)(2"+1>/2 P F(a)lC (cos £) cos aVda, (3.4)
Jo

where F(a) is an arbitrary function of a,

Ka (cos £) = P % a—1/2 (cos£) (3.5)

(known as the conal function; see Hobson [7], pp. 444-453) and K(an)(\) = d"Ka(\)/d\n.
Substitution of (3.4) in (3.3) permits us to write ^, in the form

& = |Ur\s - t)U2 f [A(a)tKa\t) + B(a)Ka(()] cosa^ da, (3.6)
Jo

where

s = cosh rj t = cos | (3.7)

and A (a), B(a) are functions to be determined in such a way that the boundary condi-
tions (2.3-.4) are satisfied. The first of these yields

f [A(ai)toK(a\to) + B(a)KJt0)] cos at) da = (s — t0)~1/2. (3.8)
Jo

Next we observe that d( )/dn — 0 is equivalent to d( )/d£ = 0 on £ = £0 , and make
use of (3.8) to show that (2.4) can be written in the form

[ {aw ~ [U^U)] + B(a) COS ar]da = ~{s- ta)~1/2. (3.9)

The conal function Ka(—t) may be defined ([7], p. 446) by
21/2 f

Ka(—t) =  cosh ax / [coshw — cos£pI/2 cos audu. (3.10)
ir Jo
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But for 0 < £0 < i", (cosh 77 — cos £0)~1/2 satisfies the hypotheses of the Fourier integral
theorem, and utilizing (3.10) we thus have

(s — t0)~1/2 — ~ f cos at] ] [ [coshw — 4]-l/2 cos audufda
X Jo Uo ' (3.11)

_ 21/2 f" — c°s ay ^
Jo cosh air

where t0 = cos £0 . Thus the right hand member of (3.8) may be replaced by the integral
(3.11). For 0 < £0 < t one may differentiate (3.11) with respect to t0 , and obtain a
representation for the right-hand member of (3.9). We are led in this way to two linear
equations for A and B whose solution is

nl/2

Ab) = 7[K^-QK^iQ - K^i-QKM], (3.12)cosh ax
,1/2

a cosh air [toK<a v"0/"° v ^ "aV "0J dt0

91/2 j

B(a) = n * _ -Ka(-Q (toK<m"(to))], (3.13)

where

0 = t0[K^\to)f - KM ~~a (tXa\to)). (3.14)

More compact expressions for A and B can be obtained, however. Suitable regrouping
of the terms of 9. and repeated use of the fact that Ka satisfies a Legendre equation
yields

| [(1 - t>)Q] = -2Ka{t)K«\t). (3.15)

Integration of this with respect to t and division of the result by 1 — t2 gives

0 = 7-^2 f Ka{T)K™{T) dr, -1 < to < 1. (3.16)
1 to Jto

The bracketed quantity in A is simply the Wronskian of Ka(—t) and Ktt{t) evaluated
at t0, which (Neumann [8], pp. 207-210) is —2 cosh ai/i( 1 — t\). Thus we obtain from
(3.12)

A(a) = ~ (j*' Ka{r)KT{r) dr) ' (3.17)

for — 1 < t0 < 1.
By essentially the same procedure as was used in discussing 0, it can be shown that

A
dt {(1 - e)[tK«Xt)K"\-t) - Ka(—t) | (^ln«))]} = -2K?\t)Ka{-t) (3.18)

holds for — 1 < t < 1. This may be integrated with respect to t from t0 (— 1 < t0 < 1)
to 1 and divided by 1 — <0 in order to obtain the bracketed portion of B(a). It will be
noted that (3.18) is not valid at t = ±1, since these are singular points for either Ka{t)
or Ka(—t) and their derivatives, but the relations ([8], pp. 207 and 209)
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lim (1 - t)'KlJ\-t) = cosh oar> j = 1,2,-.. (3.19)
1-1 T

£.(1) = 1 (3.20)

= 2.r(/+ D [«2 + (I) ][«2 + (1) ] • • • [«* + (2~2~^) ]>
j = 1,2, ••• (3.21)

permit the integration just mentioned to be carried out up to t = 1. We find then that
(3.13) yields

BU - + ;) - sss M 4 (3.22)
for — 1 < to < 1.

The insertion of (3.17) and (3.22) in (3.6), and of the result in (2.1) gives the stream
function for the Stokes flow about the spindle.

It is easily verified that for £0 = Tr/2(t0 = 0), Eq. (3.6) with A(a) and B(a) defined
by (3.12) and (3.13) [or by (3.17) and (3.22)] gives the correct result for the flow about
a sphere. In this case we note that

limifa(i0) = limJK'0( —10) (3.23)
10—»0 to->0

and

lim Kn\t0) = -lim Kn\-t0). (3.24)
t o-*0 <o-»0

For t0 = 0, (3.12) and (3.13) then gives

A(a) = — 23/2/cosh aw, (3.25)

B(a) = 2,/2/cosh air. (3.26)

From (3.6), the expression for ipi becomes

f nl/Jrr 2/ f\ 1/2 f [\Ka(t) ~ tK„\t)] ,^ = 2 Ur (s — <) Jo  c^r cos (3.27)

The integral on the right hand side of (3.27) is easily evaluated from (3.11) and the
expression obtained by differentiation of (3.11) with respect to t0 . We merely replace
£o by 7r — £ in the resulting integral formulas and obtain at once the following expression
for ypi :

*i = ¥Jr\s - t)U2{(s + t)~1/2 + t(s + r3/2}- (3.28)

This may be rewritten as

= iur\s - t)1/2{3(« + r1/2 - is - t)(s + ty3/2\

= lUr^Zbp-1 - b3p-3} (3.29)

where b is the radius of the sphere. This is the well known result of Stokes (see [3]).
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IV. Drag of the spindle. It was shown in [2] that the drag P of an axially symmetric
body for which the flow region D is simply connected is given by

~ = lim (4.1)
8th

Substituting from (1.7), (3.2), and (3.6) in (4.1) we obtain

~ lim (S + t)u2 r [A(a)<zln(i) + B(a)Ka(t)] cosar, da,
07T/X Z £_»o Jo

y-*0

ol/2 ««,

= ~Ub Jg {A(a)K(aV( 1) + 5(a)tf0(l)] rfa.

From (3.20-.21) we obtain 7fa(l) and Kla"( 1), and thus the drag of the spindle becomes

P = 23/27rubU f [275(a) - (a2 + J A (a)] da (4.2)
Jo

P = Sw/ibU [ F(^ da, (4.3)Jo cosh air

or

where

''(«) = P Ka(-r)Kla2,(r)dr / f Ka(r)Km(r) dr. (4.4)
J t0 / J to

n
With A(a) and B(a) defined by (3.25) and (3.26), Eq. (4.2) gives the well known result
for the sphere.

The reviewer has kindly called our attention to the fact that tables of the functions
Ka(t) are now being compiled (M. I. Zhurina and L. N. Karmazina, Tablitsky funktsii
Lezhandra P-.1/2+iT(x).) These tables should facilitate the computation of the drag coeffi-
cient P as a function of £0 •
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