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on / itself can be relaxed, and the fluid may be more unstable. This instability in fact
corresponds to the root zero of the characteristic equation

tan RUi = tanh RUi

given in the paper. The author is indebted to Mr. R. A. Wooding of Cavendish Laboratory
of Cambridge for pointing out this most unstable mode.

ON THE SOMMERFELD HALF-PLANE PROBLEM*
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Abstract. A simple derivation of the Sommerfeld solution to the problem of the
diffraction of a plane, scalar wave by a half-plane is given. The discusson is of interest
mainly because of the simplicity of the argument; however, it is felt that the ansatz
that forms the core of the argument is probably more generally applicable.

I. The method of deriving the Sommerfeld solution to the problem of the diffraction
of a plane, scalar wave by a half-plane, presented here, became apparent during a
study of the utility of conformal mapping in diffraction problems. The discussion is
presented mainly because of the simplicity of the argument employed to deduce Sommer-
feld's well-known result, but, beyond this, there are two other features of interest:
first, one feels that the ansatz that constitutes the core of the argument is probably
applicable more generally; and second, although the explicit conformal mapping used
is trivial, the manner in which the mapping enters into the formulation of the boundary
conditions in the ansatz may be suggestive in clarifying the relationship between con-
formal mapping and diffraction theory.

+ i? + k'

II. We seek a function, u, that is a solution of the wave equation1

= o, (i)

corresponding to the incident wave2

exp f—ikr cos (0 — 0')], (2)

and satisfying certain other conditions to be stated presently. These conditions, the
wave equation, and the form of the incident wave, show that u is a function of 0 — 6'
only; we may therefore allow 0' to approach zero and use

u0 = exp (—ikr cos 0) (3)

as the incident wave, providing that, in the final result for u, we replace 0 by 0 — 0'
everywhere.

It is instructive to consider the problem simultaneously as it appears in Fig. 1,
which shows the actual half-plane, coincident with the positive x-axis, and Fig. 2, which

*Received Oct. 26, 1959. Work done under the auspices of the U. S. Atomic Energy Commission.
!We shall use the coordinates x, y; r, 9; and z = y + iy, z* = x — iy, as convenience dictates.
2In contrast to the usual convention, note that this incident wave is traveling towards the x-axis,

from above, at an angle 0'.
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shows the half-plane mapped on the entire real axis. (Figure 1 is related to Fig. 2 by

We shall assume that 9' has approached zero from positive values of 6', so that the
incident wave in Fig. 1 is regarded as coming on the half-plane from above, right, at
grazing incidence, and moving in the negative ^-direction; in Fig. 2, the same wave,
suitably transformed, is incident on the entire real axis from above.

Suppose the boundary condition on the half-plane is u = 0; that is, u vanishes all
along the real axis in the zx plane. This condition may be satisfied as follows. Assume
we find a solution of the wave equation that has u0 as its incident wave and that satisfies
any boundary condition on the a^-axis. From this solution we subtract the function
obtained by reflecting the incident wave in the Zi-axis; the result is a solution of the
wave equation that has the correct source above the a^-axis and reduces to zero on
the xj-axis.

Thus, the only condition we need impose on u, other than that it is a solution of
the wave equation, is that the wave u0 is incident on the half-plane from above; the
boundary condition on the half-plane may be chosen at our convenience.

One simple choice regards the half-plane as "black". That is, the half-plane absorbs
the incident wave completely. No scattered wave is required, except at the edge of the
half-plane; here, a scattered wave is needed in order to maintain the continuity of the
wave function u in going around the half-plane.

This boundary condition means that we must find a (continuous) function u such
that;

u satisfies the wave equation. (A-l)
u —> Mo as Xi —> co for yx > 0. (A-2)
u —> 0 as Xi —* — 0° for yx > 0. (A-3)
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We now proceed to satisfy these conditions. Our method is based on the fundamental
ansatz:

u = uj(x 0, (4)
where we require that

/(») = 1> (5)
and

/(— oo) = 0, (6)

a pair of conditions that can be met by putting

/ax i Kr) dr, (7)
-co

where a is an arbitrary constant.
(A-2) and (A-3) are now satisfied. Moreover, /(r) is still arbitrary, leaving the pos-

sibility that it can be chosen to satisfy (A-l).
Since

d2 d2 1 d2~T" .2
dx dy I Zx ] dZi dz* '

(A-l) demands that

1 d
Zi I dzx dz* + /c2j exp (z\ + (Zi + 2*)) = o. (8)

From this, we deduce that |~/'(t) = ~ /(r) J

fiflXi) 4 ik
/(a®,) " a2 'aXl '

or,
/(t) = a exp (i2kr2/a). (9)

Putting this in (7), adjusting a to satisfy the normalization requirement (5), and using
X] = p1/2 cos 0/2, we obtain:

/op*/®cos0/2 / ot, \l/2 /* (2Ap) 1/aoosfl/2

I—2-:) exp (2ikr/a2) = / exp (if) dt. (10)
-CO \7TCt 1/

The complete solution is now given by making the replacement 9-^9— 9' in (3), (4),
and (10):

/(2fcp)1/acoa(fl —5')/2
exp (if) dr. (11)

- CO

The solution corresponds to a "black" half-plane, but, following the prescription
given earlier, it can easily be transcribed into the solution for a perfectly conducting
half-plane (u = 0 on the half-plane): In the Zj-plane, reflecting the source in the real
axis changes 9[ to — 0[ ; this transformation replaces 9' by — 9' in the z-plane. Therefore,
the required function is

u(0; 0') - u(0; - 6'), (12)

since this takes on the value zero for 9 = 0; 2ir.


