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Summary. The stress state in a rotationally symmetric shell under small displace-
ments is characterized by the direct stresses and moments in the circumferential and
longitudinal directions. If the shell material is perfectly plastic, it is desirable to express
the material yield condition in terms of these stress resultants. Previous investigations
have obtained this yield condition in certain special cases and for the maximum shear
stress criterion in the general case.

Here, a derivation is given based on the Mises or octahedral-shear-stress criterion
for both uniform and idealized-sandwich shells. The flow law relating extension and
curvature rates of the middle surface to the stress state is also obtained. The general
equations are obtained in closed parametric form and various special cases are explicitly
presented.

1. Introduction. In the analysis of structures which are thin in one direction it is
generally convenient to deal with stress resultants integrated over the thickness, rather
than with the stresses themselves. The present paper will be directly concerned with
rotationally symmetric shells. However, it will be shown that various simpler structures
such as plates, slabs, arches, and frames may be regarded as suitable special cases of
a theory based on rotationally symmetric shells. Although the methods used can theo-
retically be applied to still more general shell problems, the difficulties are formidable
and the subject will not be treated here.

The state of stress in a symmetrically loaded rotationally symmetric shell is specified
by circumferential and longitudinal direct stresses and moments and by a shear force.
However, the basic assumptions are made that straight lines normal to the median
surface of the shell remain straight and normal to the deformed median surface and
that the displacements are small. It follows that shear strains are neglected so that
the shear force is a reaction, not a generalized stress. Therefore, there are four generalized
stresses, Ne , N+ , M, , M+ . These quantities are related to the physical stress com-
ponents by

Xa = / oadZ, Ma = / Zo„dZ. (1.1)
J-H •'-II

where the subscript a may stand for either d or <f>.
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As first shown by Prager [1] the generalized strain rates corresponding to these
generalized stresses are the extension rates A„ , and curvature rates Ke , K+ of the
middle surface of the shell. In terms of these quantities, the strain rate components
at a point are

= X„ + ZKa . (1.2)

In order to formulate the shell problem, it is necessary to express all of the constituent
equations in terms of the generalized stresses and strain rates. The equations of equili-
brium and the relations between strain rates and velocities are easily derived by direct
consideration of an infinitesimal element of the shell (see, for example [2]). In the case
of an elastic material, the remaining equations necessary for a solution are obtained
by combining Hooke's law with Eqs. (1.1) and (1.2) to obtain the elastic relations
between generalized strain rate and stress.

For a perfectly plastic material, it is first necessary to express the yield condition
in terms of generalized stresses. For various particular cases, such as beams under
combined tension and bending [3] or circular plates [4], this is easily done for any yield
condition. However, for the general rotationally symmetric shell, the problem becomes
more difficult. Yield conditions have been obtained for shells where the material satisfies
Tresca's yield condition of maximum shear [4-8]. In the present paper, we shall derive
the yield condition for a shell whose material satisfies Mises yield condition of maximum
octahedral stress.

Once the yield condition has been derived, the remaining equations are furnished
by the plastic potential flow law. In geometrical terms, this states that the strain rate
vector whose components are the generalized strain rates must be normal to the yield
surface.

The present paper is concerned solely with the derivation of the yield condition
and flow law for a rotationally symmetric shell. Applications of the theory will be
reported on elsewhere [9].

2. Derivation of yield surface. As generalized stresses and strain rates for the
rotationally symmetric shell we choose the dimensionless quantities

na = Na/Na , ma = Ma/M0 , \a , Ka = (M0/N0)Ka (2.1)

where
No = 2Ha0 , M0 = H\o (2.2)

<70 being the yield stress and 2H the shell thickness. The dimensionless counterparts
of Eqs. (1.1) and (1.2) are then

ia = (1/2) J sa dz, ma — J zsadz
(2.3)

e„ = \a + 2ZKa , z - Z/H, sa - <Ta/cro .

At a plastic point the stresses must satisfy the Mises yield condition

Sj — SjS2 + S2 = 1 (2.4)

and the associated plastic potential flow rule. This latter states that the strain rate
vector («, , «2) is normal to the curve (2.4), hence

€1 — p(2si §2), €2 = y(2s2 Sj), (2.5)
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where v is an arbitrary positive scalar which describes the indeterminate magnitude
of the strain rate vector.

By combining Eqs. (2.3)-(2.5) we can establish the generalized stresses as homo-
geneous functions of order zero of the generalized strain rates. It follows that the gener-
alized stresses are thus dependent only upon three parameters representing the direction
of the generalized strain rate vector in a four dimensional space. Since the representation
of four variables in terms of three parameters is equivalent to a single equation relating
these variables, we can thus obtain the desired yield condition.

There are, of course, many ways of choosing three parameters to represent the
direction of the strain-rate vector; the following will prove convenient for later inte-
gration

(A, » ̂ 2) = ±2vt cos (r + y ± tt/6), ^ ^

(k, , k2) = =bv cos (r ± tt/6).

Here, and in the following, the first and second terms in parenthesis are to be associated
with the upper and lower signs, respectively.

In terms of r, t, and y, the stresses are

, „ v   2_ t sin (r + y =F x/6) + 2 sin (r T x/6) ,
(Sl ' ®2) 3I/3 [(2 + t cos yf + (Jsin yf]l/2 ' {2J)

Substitution of Eqs. (2.7) into Eqs. (2.3) and integration will give the desired yield
condition. To carry out this integration we make the substitution defined in Fig. 1
and introduce new parameters p and q as the values of co at z = — 1 and z = +1, re-
spectively. If t is finite and t sin y ^ 0, then p and q must satisfy one or the other of

—tt/2 < p < 03 < q < ?r/2, (2.8a)

ir/2 < p < u < q < 3x/2. (2.8b)

In either case, the generalized stresses and strain rates are obtained in terms of p, q,
and r [10]:

/ \rr,i/2 ■ / m / , (1 + sin »)(1 — sinp)
(n, , n2)[3 sin (p - 9)] = cos p cos q cos (r =F tt/6) log q _ sin + sin

+ 2 sin (r =F 7r/6)(cos p — cos q) (2.9)

(m, , m2)[31/2 sin2 (p — q)/2 cos p cos g)]

= [sin (p + q) cos (r =F ir/6) + cos p cos q sin (r =F ir/6)]

•log [(1 + sin g)(l — sinp)(l — sin g)~'(l + sin p)~']

— 4 cos (r =F t/6)(cos p — cos q) — 2 sin (r =F 77-/6)(sin q — sin p)

(\i , X2) sin (p — q) = v[±2 cos q sin (r — p ± tt/6) ± 2 cos p sin (r — q ± 7r/6)]

(k 1 , K*) = ±" cos (r ± ir/6) sin (p — q).

Equations (2.9) give two different hypersurfaces, depending upon whether p and q
satisfy Eq. (2.8a) or (2.8b). The dividing "hypercurve" between them may be found
directly by setting sin y = 0 before integrating the generalized stresses [10] or by letting



308 P. G. HODGE, JR. [Vol. XVIII, No. 4

t sin y

Fig. 1. Definition of w

p and/or q tend to ±7r/2 in Eqs. (2.9). The result is

(fit , n2) = (2/3l/2) t sin (r =F x/6)

(m, , m2) = (2/31/2)(l - t2) sin (r T tt/6) (2.10)

-1 < < < 1.

Much simpler expressions are obtained for an ideal sandwich shell composed of
two thin sheets of thickness J each, separated by a core of thickness 2H'. The sheets
are so thin that the stress variation across each sheet can be neglected; the core has
no tensile strength but can carry the necessary shear. Evidently Eqs. (2.2) and the
last Eq. (2.3) should be replaced by

No = 2M0 = 2c'oH'J, sa = aju'o . (2.11)

It follows from statics that the stress resultants are related to the stresses s* and s~
in the top and bottom sheets, respectively, by

si = na + ma s~ = na — ma . (2.12)

The yield condition (2.4) cannot be violated by the stresses in either sheet. Therefore,
substitution of Eqs. (2.12) in (2.4) shows that the yield condition consists of the two
non-linear surfaces

(ri! ± m-t)2 — («! ± m,)(n2 ± m2) + (n2 ± m2)2 = 1. (2.13a, b)

The corresponding strain rates are

xr = ± m,) - (n2 ± m2)], X2* = v'[2(n2 ± m2) - (n, ± m,)] ^ ^ ^

k,* = ±v""[2(ni =fc mx) — (n2 ± ?n2)], k2 = ±v*[2(n2 ± m2) — (nx ± m,)].

If the stresses satisfy both of Eqs. (2.13), then the strain rates may be any combination
of those in Eqs. (2.14a and b), provided only that the coefficients v* and v~ are both
non-negative.

3. Special cases. Various structures of practical importance may be regarded as
special cases of shells of revolution. Included in this category are arches, circular slabs
under rotationally symmetric in-plane loads, rotational bending of a circular plate,
and rotationally loaded circular cylindrical shells. In each case, the yield condition
can be obtained as an appropriate special case of Eqs. (2.9) or (2.13). The following
results of interest are then obtained.

a. Circular cylindrical shell. By assumption, = 0 hence m2 = me is a reaction
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m.

Fig. 2. Yield curves for circular cylindrical shell without end load.
— — —Mises condition, uniform shell
   • • Mises condition, sandwich shell
 Tresca condition, uniform shell
 Tresca condition, sandwich shell

to be eliminated from the yield condition. For the sandwich shell this process leads
to two surfaces:

±2(2ne - nx) = [4 - 3(n, - mt)!],/2 + [4 - 3(n, + mxf]U2. (3.1)

For the uniform shell we obtain the two surfaces

— rb„i/2
2 cos p — cos q

31/2 sin (p — q)

n, _ r cos p cos q . (1 + sin q) (1 — sin p) cos p — cos q "I
L 2 sin (p — q) 0g (1 — sin q) (1 -f sinp) 31/2sin (p — q) J '

_ f ^ cos2 P cos2 1 ] (1 + sin <?)(! — sin p)
L31/2sin2 (p — q) °g (1 — sin g)( 1 + sin p)

(3.2)

cos p cos q (sin q — sin p)
31/2 sin" (p — q)

b. Circular cylindrical shell without end load. This case is a special case of the
preceding one obtained by setting nx = 0 in Eqs. (3.1) or (3.2). We obtain

n; + (3/4) ml = 1 (3.3)
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Pig. 3. Yield curves for stresses or circular plate under pure bending or pure tension
 Mises condition, both shells
 Tresca condition, both shells

Fig. 4. Yield curves for arches
 Uniform shell, both conditions
 Sandwich shell, both conditions
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for the sandwich shell. For the uniform shell

, ,■> ,ns , i 1 + sin qne = ±(1/2) cot q log - ,1 sin q (3 4)

1 T ,2 , 1 + sin q
172 cot q log   : 2 csc q •L 1 ~ sin q "Jm, = ±3

c. Circular slab under tension. Here = m2 = 0 by assumption. The entire yield
curve for the uniform shell is on the locus (2.10) of singular points. Setting t — 1 and
eliminating r from the first line of (2.10) we obtain

n\ — n{n2 + n\ = 1. (3.5)

It follows from Eqs. (2.13) that (3.5) is also valid for the sandwich shell.
d. Circular plate under bending. In this case n, = n2 = 0. Reasoning similar to

that in case (c) shows that the yield curve for the uniform or sandwich plate is

ml — ?n,m2 + ml = 1. (3.6)
e. Curved beam or arch. Here transverse stresses are negligible, so that n^ = = 0.

Here also the singular curve for the uniform shell applies in the form

m, = ±(1 - n2e), (3.7)

whereas the sandwich shell reduces to the linear expressions

ne — me = ±1, ne + ms = ±1. (3.8)

Figures 2, 3, and 4 show the special yield curves obtained in this section. For com-
parison, the corresponding curves for materials which satisfy the Tresca condition are
also shown.
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