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Introduction. It is the purpose of this work to derive functions which represent the
flow of a perfect fluid inside a cylindrical wall. The velocity perpendicular to this wall
must be zero everywhere. Some of the problems discussed will have the axis of the
cylinder as an axis of symmetry, but several problems are discussed where the flow is
not symmetric about an axis.

In Sec. 1 a certain set of boundary conditions is shown to lead to a series involving
Bessel functions. This solution is shown in Sec. 2 to be the result of a point sink at the
origin and a circular ring source lying in a plane perpendicular to the axis of the enclosing
cylinder and through the origin. This discussion enables the stream function for a source
alone and a ring alone to be found. The problem of the combined ring source and point
sink in a uniform stream through the cylinder is next discussed. The stream function
for a point source in the cylinder not on its axis is then found in Sec. 3.2.

In Sec. 3.4 a new result is obtained which shows that the potential due to a sink not
on the axis can be decomposed into a sum of terms, each term being the potential due
to a ring source circular in shape but with non-constant strength. It would seem that in
many ways these particular ring sources offer the simplest possible configurations with
which to begin the study of fields which do not possess axial symmetry.

In Sec. 4 the field of a source and sink on the axis in a stream inside the cylinder is
discussed and the semi-axes of the resulting closed stream-surface are computed.

In Sec. 5 the field of the ring with strength M cos 0 is worked out in detail, this being
the least complicated of the ring sources of Sec. 3.4.

1. Let \p(p, z) be a stream function in cylindrical coordinates for a field which is
symmetric about the 2-axis. Then ip(p, z) is a solution of the equation

dV 1 d\p . dV _ n
dp2 p dp + dz2

which has solutions of the type

Hp, z) = X) A<n exp (—jimz/a)pJlO'imp/a),
m = 1

where jlm is the mth positive zero of the Bessel function of the first order Ji(x). It follows
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that \p(a, z) = 0 for all z since (j,m) = 0, and tf>(0, z) = 0 for all z since p is a factor in
each term. There is an expansion theorem that if f(t) be a function arbitrarily defined
in the interval (0, 1) and

f1 t1/2M
JO

dt
exists, and if

am = {2/[J2(jlm)]2} [ tf(t)Ji(jimt) dt;
Jo

then
CO

X a»>JlihmX)
m= 1

converges and its sum is (1/2) {f(x + 0) + j(x — 0)} at any internal point x of an
interval (a, b) such that 0 < a < b < 1 and f(t) has limited total fluctuation in (a, b).*

Consider the function F(p)

F(p) = \M, 0 < p < ka, k < 1

[O, ka < p < a,

then F{p)/p has limited total fluctuation in any interval 0 < e < b < 1, and

[* tU2[F(t)/t] dt = f Mt~1/2 dt = 2Mty
Jo Jo

" = 2 Mk1/2
0

exists (where t = p/a).
Therefore, the theorem applies to this function and

am = 2/[aJ22(jlm)] [ dt,
Jo

= 2M/[aJ22(jlm)\ f dt,
Jo

— 2M[1 Jo(jlmk)]/ajlmJ,
since

J J i(u) du = — J0(u).

Now with Am = am the solution for \p becomes

i(p,z) = pE {2M[1 - Jo(jimk)]/[ajlmJl(jlm)]} Jid^p/a) exp \ z |)/a] (1.1)
m= 1

and

K m V 2A/"[1 — Jo(iimk)] j .. , ,
V(p, 0) = P 2-, —72/- X JAhmP/a)

m= 1 UjimJ 2\Jlm)

= pF(p)/p = F(p) =
J M, 0 < p < k a
[o, ka < p < 1

*G. N. Watson, Bessel functions, Cambridge Univ. Press, 1922, Sec. 18.24.
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It should be noted that so that only values of J0 and Jx are needed.
Hence we have a flow such that \p = 0 consists of the cylinder p = a and the part of the
plane z = 0 between p = ka and p = a, and the z axis. \p = M consists of the part of
2 = 0 inside p = ka. The plot of the values of the function shows that the origin is a
sink into which the fluid flows and there is a ring source of radius ka in the plane 2 = 0.
(Fig. 1* was made for k = 1/3, M = x.)

1.0 P

2. If we take

-1.0 -.50 0 .50 1.0 Z

Fig. 1

i = -7T P + t(p, 2),

where ^(p, z) is given by Eq. (1.1), we will have a stream flowing around the ring source
and simple sink at its center. If qz , q„ are the velocity components, we have

q, = S A<n exp {-]imZ/a)J0(jlm £) (2.1)
P UP m= 1 \ &/ d

q" = n ̂ 7 = ~ ^ Am exP (-hmZ/a) J A™ • (2.2)
p oz m=l CI \ d/

If p = 0, Jo(0) = 1, so on the z axis

g2(0, 2) = U - £ exp i-jlmz/a).
m= 1 CI

The stagnation point on the axis will be given by the root of the equation

2M = } 6XP (2"3)

when solved for u and z = ua. It will be noted that if a stagnation point can occur at a
place not on the 2-axis q2 and q„ both are zero. So from (2.2) a value can be assigned for
2 and the resulting equation for p can be solved, giving the coordinates of the stagnation
point. Then these values can be inserted in (2.1) and the value of U/M can be calcu-

*Calculations were done by the Ordnance Research Laboratory computers. See Appendix I for
values of <p, and Fig. 1.
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lated, giving the velocity of the stream at a great distance from the origin. It was found
that 2 = 0.20 gives an equation

/(p) = 1.054(3.8817p) + 2.620/, (7.1056p)
+ 2.825J, (10.1725p) + 1.948/, (13.3237p)
+ 0.972/! (16.4706p) + 0.454/, (19.6159p)
+ 0.278/, (22.7601p) + 0.2267! (25.9037p)
+ 0.167/, (29.0468p) + 0.105/! (32.1897p)
+ 0.058/i (35.3323p) + • • • = 0.

This gives the following table of values:

/(p)

0.3

2.450

0.4

0.668

0.49

0.043

0.5

-0.020

0.7

-0.074

therefore, z — 0.200, p = 0.497 is a stagnation point. This is approximately z = 0.20,
p = 0.50. The value of U/2M = 0.649 from (2.2); or U = 1.298m. Equation (2.3) gives
a stagnation point at — 0.65 on the z axis. By direct calculation from (2.0) the values
of *p/M can be calculated.*

t = 0.649

3. Since the problem of the sink in a cylinder where the flow is along the cylindrical
wall is a Neumann problem, it is necessary for d<b/dn to vanish over the cylinder. The
velocity potential satisfies the differential equation:

Let

Therefore, P — J,(kp).

d2<j> 1 1 d2& d2$
dp2 p dp p2 d<p2 dz~

$ = e ' cos S(pP(p),

^ T p + k2p = 0,
ap pap p

2 d P - (IP , / j 2 2 2\p
" d/ + 'd^ + (t' "S)P °-

*See Appendix II for a table of values and Fig. 2.
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Let

$ = X X Ak,e ~k' cos s<pJ,(kp)
k 8 = 0

d$/dp = XI E 4*.e~**(cos s<p)kJ[{kp).
k s=0

Therefore, if d$/dp = 0 for p = a, J's(ka) = 0. If hs,m is mth root of J's = 0, k = h, m/a.
3.1 For any axially symmetric field s = 0, J'0(lca) = — J,(ka) = 0; so

ka = jin ,

$ = Z) An exp (~jln | 2 \/a)J0(jlnp/a),
n— 1

CO

d$/dz = - X) AniiiJa) exp (~jln I z \/a)Jo(j,„p/a),
»= 1

on 2 =0 ^ = I00! P = 0, simple pole] = _
dz r M «(P),

LO; 0 < p < a

L Jo (IF) p^°^lrp/a) ^0 dp = —2irM if M
is the strength of the sink, because

>(!?)0 =-M

Hence, the integral = MJ„(0) /o/oT d 6 dp = total flux from the sink on one side of

2 = 0= —2x^4, / (jlrp/a)Jo(jirP/a)Jo(jirP/a) dp,
Jo

since every integral vanishes except for

n = r = -7r,4r7lraJo(iir)*,

so

Ar = 2M/[jlraJ*Glr)];

hence,
CO

$ = £ {2M/[j1„aJoO'in)]} exp | z \/a)J0{jinp/a)
71= 1

is the velocity potential of some field with a sink at the origin with normal velocity
0 on p = a.
The stream function is

CO

i {2M/[jlnaJl(jln)]}pJidmp/a) exp (-jln | z |/a), (3.1)

*G. N. Watson, Bessel functions, Cambridge Univ. Press, 1922, Sec. 5.11 (11).
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which obviously gives rp(a, z) = 0 (since Ji(jln) = 0). Also note that this is a part of
Eq. (1.1). However, this equation gives a velocity 0 at z = <», so it is necessary to add a
stream flowing from right to left; i.e., a term Mp2/a2, then the resulting field is that of
a sink in a cylinder.

If a stream of velocity U from right to left is added (Fig. 3):

i = (| z \/z)(2Mp/a) X) Vi(j\np/a) exp (-jln | 2 \/a) + —§~ + w P■
n = 1 a £

Mp2 , U
T

/ /////////// ////////////

wwwwwWywwwww
Fig. 3

Assume a = 1. Then for z > 0

for z < 0,

^ = 2Mp ^2 {j'lnJo(ii„)} 'JiihnP) exp (-jln | z |) + + ~jp2]

i = -2Mp X {ji»/o0'in)}"1Jr10'mp) exp (-jln | z |) + - M^jp2)

q. = -JU = ~ = {E {[2Af/0(jlnp)]/Jo(im)} exp (-jln | z |} + 2M - U,
n— 1

U > 2M
on

p = 0, qz = 0 if E Jltim) exp (~jln \ z |) = - !•

Since

fod
+ exp I 2 1) jl,„

J2o(hn) exp (-j1-n + 1 I Z I) jl.n+1 . x ,
2 / ^    / _• I _ I \ • exp J1, n +1 ~T~ J1, n) \ %

^ (l + ;p) exp (-7T I z I) ^ exp (-7T I z |)
\ Jl n'

as n —> 00, the series converges if | z | > 0.

The graph of U/M as a function of z is made from the following Table which was
computed from the formula just derived.

z 1 1/2 1/3

U/M 0.150 1.376 3.769
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The graph of U/M = 2 + 2 X) can be compared with the function (U/M)1/2 which
gives the position of the stagnation point for a source in a free stream and it is evident
that a stronger stream is needed inside the cylinder to push the stagnation point to the
position it has in a free stream. The curves are plotted in Fig. 4.

JJ.
M

3.2. In the case where the sink of strength M is at (b, 0, 0) the same method can
be used. Let

$ = £ X) A«> exP (~h.n | 2 I/a)J.(h,np/a) cos s/xp, (3.2)
s=0 n=l

where h,n is the nth positive root of J'(z) = 0. Now

(d$/dz),=o = -Qitn/a)${p,<p, 0).

Fig. 5
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Hence

If cos s<pj,(h,„p/a) pdspdp
= (1 + aj0M/iin/aM,„-(a7m„ -

where

5«o —
1, s = 0

lo, s > 0.
90

2 = .15
o MAX cj> =.3472
AT p = .1378

Fig. 6

But (d$/d2)2_o is zero everywhere except at the point (b, 0, 0), so the integral must be
equal to

J s(hln/a)(—2irM).

The integral must be interpreted as a Stieltjes Integral of a discontinuous function.
Therefore

-2wMJ,(h.nb/2) = -TA.na(tin - s'XzhJ-'JKhJi 1 + 8>0).
Therefore

a 2ikf/&an(2 8a0) t /i 7 / \
^•sn /72   2\ r2/T \ Ja\h»n^J •

^\i^sn S)Ja\rlsn)

3.3. In the special case where we demand symmetry with respect to the axis we get
a set of terms

$ = 2Ma~\ X 2 exp (-jln \ z \/a)Ju(jlnb/a)J0(jlnp/a) \ + 2Mz
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90^ 60"
Z = 0.20
o MAX <J) = .2152
AT P * .1675

Fig. 7

which still satisfy the differential equation and from (1.1) and (2.1) this must be the
potential of a ring sink with 2M for its strength and b for its radius, inside a cylinder of
radius a after the addition of the stream term. The stream function for this will be

CO

i = 2nlUoih JV exp (- j,„z/a) J0(ji„b/a)Jidmp/a)^ + Mcf2p2.

3.4. A ring source with variable strength [M/(2irb)] cos sVo at the point (b, <pn , 0)
gives for the potential of the whole ring

= Jo cossVoj Z! it, exp (-hsn | z \/a)Js(ha„p/a) coss(<p - <p0) J| d<p0 ,

but

fJo
cos s'<Po COS s(<p — <po) dtpo = J

[x cos S(p;
so

= (m/2) cos X A*n exp (-hsn | 2 \/d) JsQisnp/d)
U= 1

Since these are exactly the terms of the original series Eq. (3.2.1), which contain cos
sip, we have the theorem that the potential $ for a point source at (b, 0, 0) of strength
M on a cylinder consists of the sum of the potential for s = 0, 1, 2, • • • where $, is the
potential of a ring source of variable strength in the cylinder and passes through the
point source and has a strength [M/(2irb)] cos s<p0 at the point (b, <p0, 0) of this ring.

The ring for s = 1 will be referred to as a ring of the first order. The ring of zero
order is just a ring of constant strength since cos s<p0 = 1 if s = 0.



90 THOMAS C. BENTON [Vol. XIX, No. 2

In Sec. 5 below, the field of the first order ring will be worked out in detail.
4. Let there be a source of strength M at p = 0, z = b and a sink of strength M at

p — 0, z — — b and a stream flowing from right to left inside a cylindrical wall with
axis along the z axis. If z > b the streaming motions at infinity due to source and sink
cancel each other and these terms may be omitted. The same thing occurs for z < — b.
But between the two singularities — b < z < b there will be a streaming motion from
source to sink.

For z > b

ip = (U/2)p2 - it/'ZMpj'illJ0(ji„)]~Vi(jmp)!exp (—jln | 3 — b |) - exp(-j'ln | z + b |)}
n= 1

= (C//2)p2 - £ 2MpuMU]-2J1(jlnp)(Smh jlnb) exp ( —jlnz).
n= 1

If \p = 0, we will have the dividing stream surface so this surface has the equation

p{u/ 2 - Z 2M[,/0(ii»)]~2- [2J i(ii„p)/Gi„p)](sinh jlnb) exp (-jlnz)} = 0.

If p 0, the part of this stream surface, not coincident with the axis p = 0, has for its
equation

oo

U/(iM) = J] [Jo(jmp) + /20i„p)][Jo(ii»p)r2(sinh jln&) exp (—jlnz)
n= I

since (2/z) ./j (z) = Jn(z) + J2(z). Now the points on the axis p = 0 belonging to this
surface are the stagnation points, so

CO

U/(4M) = X [/o(ii»)]"2(sinh jlnb) exp (~jlnz)
n= 1

90° 60°

Fig. 8
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is an equation for the z coordinate of the stagnation point. This gives the value U/M =
0.2828 for 3 = 1.50, and U/M = 2.6120 for 2 = 1.00.

For — b < z < b,
CO

i = (U/2)p2 + 2MpiVdJi(iin)Y2Ja(j,np)[exp (—jlnb)]2 cosh jlnz + 2Mp2.
n— 1

Now = 2M, 2 = 0 gives the position where the boundary of the closed dividing stream
surface crosses the plane z — 0. Since p ^ 0 the equation

2M + (17/2) + ± 2M[J„(ii„)]_2[</o(jmp) + J2(jInp)] exp (~jlnb) = 2MP~2
71= 1

gives the intercept. This gives p = 0.955 for the first case and p = 0.742 for the second.

Fig. 9

5. In the case of the most simple ring with variable strength discussed in (3.4), we
have

CO

$ = i cos <P 2MhlnJ1(h1„b/a)(ti„ — l)~1[J1(hln)]~2J1(jlnp/a) exp (-hln \ z |/a).
n= 1

To obtain some numerical values we will take b = a/10, a = 1; so that the ring is one
tenth of the radius of the cylindrical wall and in a plane perpendicular to the axis of
the cylinder with its center on the axis. It is necessary to have the values hln which are
zeros of Jiiz); since zJ[(z) = zJ0(z) — Ji(z) and the value z = 0 is not one in which we
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Fig. 10

are interested; these values can be found much more readily from the second form, i.e.,
zJ0{z) = 0. The values found are as follows

1.8412 5.3314 8.5363 11.7060 14.8636 18.0155

10 11 12

21.1644 24.3113 27.4571 30.6019 33.7462 36.8900

In computing $ for z = 0.10, it was necessary to use 12 terms of the series to get con-
sistent values, a smaller number sufficing for larger values of z.

It will be noted that the strength of the source along the ring varies from a maximum
M at >p = 0, to 0 at ^ = tt/2, to a minimum — M at <p = x, and back through 0 at
<p = liir/2 to M at <p = 2 ir. Evidently $ = + °° on the upper half of the
ring and $ = — <» on the lower half; and any surface $ = c must pass through the points
(1/10, t/2, 0) and (1/10, 3tt/2, 0). If c is large and positive, we must obtain a sausage-
shaped surface enclosing the upper half of the ring; and if c is large and negative, one
enclosing the lower half of the ring. The diametral plane <p = tc/2, <p = 3x/2 is the surface

= 0. For small values of $ there is a closed curve on the cylinder p = a which is symmet-
ric to the plane z = 0 and to the plane $ = 0, in which the equipotential surface meets the
cylinder orthogonally; and then passes down through the two points of strength 0 on
the ring without cutting the plane surface $ = 0 at any other points. In calculating the
values of $ the values z = 1.0, 0.5, 0.2, 0.15, 0.1 were used, and values of p from 0 to
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1 for about 20 values, so chosen as to give the more interesting situations. Graphs of the
equipotentials are given in Figs. 5-9 for each section perpendicular to the axis at the
constant values of z in the above series. A sketch of the equipotentials is given in Fig.
10. The streamlines are the curves which are orthogonal to the equipotential surfaces.
Since the ring is a curved line-source, the streamlines from any point on the ring must
all leave the ring in the plane normal to the ring at that point, and these streamlines
form a closed surface which meets the ring again in the point symmetric to the starting
point below the surface $ = 0. These closed surfaces are nested and close down to point
limits at the two points of zero strength. They also have as an outer limit, the surface
of the bounding cylindrical wall. The streamlines which leave a point on the ring source
are shown in Fig. 11.
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Appendix I

The stream function
CO

i(p,z) = 2TP Y, [exp ( —j„z)][l - J0<Jn/3)]jm1
m=l

must be evaluated for 0 < z, 0 < p < 1, where J 0(z) and JAz) are the Bessel functions
of order zero and one, and jm is the mth positive zero of J i(z). Intervals of 0.1 were chosen
for p and the series was evaluated for z = .25 to z — 2.00 with intervals of 0.25. This table
and that in App. II were computed by the Computing Section of the Ordnance Research
Laboratory.

Fig. 11
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TABLE 1—

z/p .1 .2 .3 .4 .5 .6 .7 .8 .9

Oil 1 0 00000
.25 .1687 .4502 .5639 .4847 .3437 .2262 .1445 .0867 .0415
.50 .0245 .0814 .1360 .1646 .1637 .1426 .1115 .0763 .0393
.75 .0059 .0212 .0396 .0550 .0631 .0628 .0550 .0408 .0221

1.00 .0018 .0067 .0133 .0195 .0239 .0253 .0255 .0181 .0101
1.25 .0006 .0024 .0047 .0072 .0091 .0099 .0094 .0074 .0042
1.50 .0002 .0009 .0018 .0027 .0035 .0038 .0036 .0029 .0016
1.75 .0001 .0003 .0007 .0010 .0013 .0015 .0014 .0012 .0006
2.00 .0001 .0003 .0004 .0005 .0006 .0005 .0004 .0002

Appendix II
Values of 4>/M Computed from Eq. (2.0)

p/z -.30 -.20 -.15 0- 0+ .10 .15 .20 .30

0 0.000 0.000 0.000 -1.000 1.000 0.000 0.000 0.000 0.000
.1 -0.036 -0.994 1.006 0.147 0.049
.2 -0.067 -0.052 -0.975 1.025 0.187 0.004 0.114
.3 -0.102 -0.941 1.059 0.219
.4 0.171 +0.020 0.000 +0.105 0.105 0.237 0.208 0.188 0.091
.5 0.182 0.104 0.082 0.162 0.162 0.211 0.207 0.220 0.182
.6 0.283 0.198 0.204 0.234 0.234 0.259 0.263 0.283
.7 0.260 0.318 0.318 0.264 0.243
.8 0.415 0.415
.9 0.525 0.525

1.0 0.649 0.649 0.649 0.649 0.649 0.649 0.649 0.649 0.649

A few other values are of interest: For p = 0 — ,Z = 1/3 —, <// 1.071, and for p = 0+, Z = 1/3+,
4> = 0.071, has a period 2 and lines for which 4> = a or a + 2 etc. are the same line, as illustrated by
the line through the stagnation point = 0.22 or ^ = —1.78.

Appendix III

Figures 5-9 are cross sections of the field of the first order ring at distances z = 0.1,
0.15, 0.2, 0.5, 1.0 from the plane of the ring, the curves being the equipotentials. These
were made from computations done by the ORL Computing Section.

Figure 10 is a sketch of the general form of the equipotentials in one octant of the
cylinder. This is the work of Mrs. Joan Lampman.

Figure 11 is a sketch of the stream lines which emanate from one point of the ring
source in the case of the first order ring.


