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THE DISTRIBUTION OF QUADRATIC FUNCTIONALS*
By JOHN B. THOMAS (Princeton University) and EUGENE WONG (IBM Research Center)

1. Introduction. The purpose of this note is to consider the joint probability
distribution of quadratic functional of the form

= [' Z xMh^(r)xt(r) dr, (1)
Jo i, k

where the Xj{r) are correlated Gaussian processes and the h]™' M are given functions.
The probability distribution of a single functional of the form of (1) has been treated
by another method Siegert [1] for the case where the x,(t) are stationary.

The solution to the problem described reduces to the solution of a homogeneous
matrix integral equation. This equation shows explicitly the transformation functions
hand the covariance functions of the x,(r).

2. Analysis. Let the functionals under consideration be denoted by

= [' X(r)-hlm\r)X(r) dr, m = 1, 2, •• • , p. (2)
Jo

Here X(r) is an n-element column vector whose elements xt are correlated Gaussian
processes with zero means, and h'm\r) is an n X n symmetric matrix [2] whose elements
h ,-r'are given functions. In addition let X(j) be written formally as the series

X{r)=X>A(t), (3)
k=\

where the ak are random variables and the 4>k(r) are non-random vector functions.
With the substitution of this series, (2) becomes

y.

y™ — it* X a/0t [ 4>i(T)-h{m\T)(t>k(T) dr. (4)
j=1 k=l JO

The characteristic function for the joint probability distribution of the ym is given by

P(.i7i >•■•,'?»)= -sjexp J] irimym\, (5)

where i — (—1)1/2 and E{ } denotes the expectation of the bracketed quantity. From
(4), the characteristic function becomes

F(vi , • •• , Vp) = Eiexpi it aiak f <#>i(r)-w(^(r) dr], (6)
I 3=1 k=1 JO J

where the order of summation has been interchanged and the weighting function matrix
w(r) has been defined by

W(r) 4 ± Viha\r). (7)
J = 1

Let the elements of the covariance function matrix of the x,(r) be given by

  Rjk(r, <r) = ElxMxtio)}, (8)
*Received Aug. 12, 1960.
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and let the 4>m{r) be the eigenfunctions of the homogeneous matrix integral equation

f R(t, a)w(<r)<t>(<T) da — \<f>(T). (9)
Jo

Then it is shown in the next section that the <^>„(r) are orthonormal with respect to the
weighting function w(t), i.e.,

[ <t>k(r) dr = 8H , (10)
Jo

and the ah are uncorrected; hence the ak are independent Gaussian variables with zero
means and variances \k . The characteristic function can be written from (6) and (9) as

F(vi , ■ ■ ■ , Vv) = E\ exp i X) al> = II (1 - 2i\k) 1/2. (11)
I *=1 ) k=1

Equation (11) is the solution to the problem provided that the series representation
(3) is valid and that the eigenvalues \k can be found from (9). These points will now be
discussed.

3. Series representation. It will be shown that the vector eigenfunctions of (9)
which correspond to different eigenvalues are orthogonal with respect to the weighting
function matrix w(jj. This proof parallels the standard proof for the scalar case [3].

For two distinct eigenvalues X,. and X,- , expression (9) can be used to form

f <t>k(r)dr = [ f R(t, o)w(<r)4>k((r) •w(r)<l>j(,T) da dr, (12)
JO Ai Jo Jo

and

[ 0*(t)-M>(t)0,-(t) dr = [ f <f>k(r)a)w(a)<f>,(a) dr da. (13)
Jo Ay Jo Jo

The matrix identity

MA-B = A MtB,
where the subscript T is used to denote the transpose of the n X n matrix M and where
A and B are n-element column vectors, may be applied to the right side of (12) to yield

f <t>k(T)-w(T)<t>j(T) dr = i f f <f>k(a) •Wt(o)Rt(t, a)w(T)<t>j(T) da dr. (14)
Jo Afc Jo Jo

Now, if a and r are interchanged in (14) and if it is noted that wt(t) = w{t) and that
RT(a, r) = R(t, a), the result is

f <t>k(T)-w(T)<l>,(T) dr = —■ f [ -w(t)R(t, a)w(a)<j>i(a) dr da. (15)
Jo Ak Jo Jo

A comparison of (13) and (15) shows that, for X, ^ \k ,

f ^t(r) •u>(t)4>,(t) dr = 0 (16)
Jo

and, with proper normalization, (10) follows.
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That the ak of (3) are uncorrelated as a consequence of (9) may be shown by forming
E{akaj}. From (10),

E{akaij = E[[ Jf' [Z(t) •w(r)^(r)][Z(<r)-w(o)*,(<r)] dr do}. (17)

The integrand of (17) may be rearranged to yield

E{aka,} = f* [jr'^{Z(r)Zr(o)}«(»)*((o)d»]-«(r)^(T)dr. (18)

Since E{X(r)XT(a) } •— R(t, a), it follows from (9) that

E{akaj\ = X, [ <£,(t)-w(r)<t>k(r) dr, (19)
Jo

and, from (10), that

E {aka, j = X, 5,* . (20)

Thus the ak are uncorrelated random variables with variances \k . The means of the
ak are each zero, i.e.

E{ak\ = [' E{X(r)} -w(r)<t>M dr = 0, (21)
JO

and the linearity of (10) makes the ak Gaussian.
The series expansion (3) is a generalization of the Karhunen-Loeve representation

[4, 5] and reduces to that representation for the case of one-dimension and for w(x) = 1.
As in the one-dimensional case, it can be shown [6, 7] that the 4>i exist and that the
components of the vector series (3) converge mean square to the components of the
vector process X{r). In addition, if R(t, <r) is a positive definite kernel, then the 4>, are
complete and the X,- have at most a finite degeneracy. In these proofs a generalization
of Mercer's theorem is required to represent the elements of the matrix R(t, a).

4. The single-functional case. For the special case where only a single functional
y is considered, (9) can be written as

f R(t, a)h(a)<t>(a) da = v$(r), (22)
Jo

and the characteristic function (11) becomes

F(v) = n (1 - 2ivvky1/2, (23)
k = l

where rivk = \k . Now if the matrix g(r, ju; tj) is defined by

Mi i?) = g i _ 2lr)Vk ' (24)

then, by direct evaluation,

g(r, n; v) ~ 2iri [ R(t, <r)h(a)g(<r, m; ij) da = R(t, h). (25)
Jo
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For the stationary case (25) is identical, except for a change in notation, with Eq. (79)
of Ref. [1]. In terms of the matrix g(r, n, rj) the characteristic function can be written

F{v) = exp if d£ [ Tr[g(a, <x-,$)h(o)] da, (26)
Jo Jo

where Tr[ ] is the trace of the matrix.
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FURTHER EXTENSIONS OF SCHUSTER'S INTEGRAL*
By E. T. KORNHAUSER** (H. H. Wills Physics Laboratory, University of Bristol)

The integral,

I = f [C\x) + S2(x)] dx,
Jo

where C(x) and S(x) are Fresnel integrals defined by

C(x) = f cos f dt,
J x

S(x) = J sin f dt,

was conjectured by Schuster1 to have the value (x/8)1. Proof that I does in fact have
this value was given by Hardy2 and more elegantly by Ingham3. More recently Bateman4
has extended Ingham's treatment to evaluate integrals of the form

/ C(x)C(ax) dx, / C(x)S(ax) dx,
Jo Jo
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