where $h_{e}^{*}(z)$ is regular in S_{e}, including infinity, such that on C

$$
r e h_{e}^{*}(z)=g(x, y)-k \frac{\partial \phi_{e 0}^{*}}{\partial r}-\frac{l}{a} \frac{\partial \phi_{c 0}^{*}}{\partial \theta}-m \phi_{e 0}^{*}
$$

and $\Omega_{e}(z)$ is regular in S_{i}, having singularities only in S_{e}.

References

1. L. V. Kantorovich and V. I. Krylov, Approximate methods of higher analysis, Translated by C. D. Benster, Noordhoff, Groningen, 1958, p. 582
2. N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, Translated by J. R. M. Radok, Noordhoff, Groningen, 1953, p. 296
3. E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford Univ. Press, 1950, p. 100
4. G. S. S. Ludford, J. Martinek and G. C. K. Yeh, The sphere theorem in potential theory, Proc. Camb. Phil. Soc. 51, 389-393 (1955)

ON MATRIX DIFFERENTIAL EQUATIONS*

By JOHN JONES, JR., (Institute of Technology, Air University)
The purpose of this note is to obtain a necessary condition and a sufficient condition, of an algebraic nature, for the matrix differential equation

$$
\begin{equation*}
A X^{\prime \prime}+X B=C \tag{1}
\end{equation*}
$$

where all matrices considered are n-square, to have a single-valued solution. Capital letters denote matrices and prime denotes the derivative with respect to x. The elements of A, B, C belong to the polynomial domain $\mathfrak{F}[x]$ of the field \mathcal{F} of real numbers. I is the identity matrix.

Theorem 1. If a solution matrix X of Eq. (1) exists, then the following pair of matrices

$$
\left[\begin{array}{ll}
A & C \tag{2}\\
0 & B
\end{array}\right], \quad\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right]
$$

are equivalent.
Proof. Clearly

$$
\left[\begin{array}{cc}
I & -X \tag{3}\\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A & C \\
0 & B
\end{array}\right]\left[\begin{array}{cc}
I & -X^{\prime \prime} \\
0 & I
\end{array}\right]=\left[\begin{array}{ccc}
A & C & -A X^{\prime \prime} \\
0 & -X B \\
0 & B &
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]
$$

and so the matrices of (2) are equivalent.
Theorem 2. If the matrices of (2) are similar and there exist non-singular constant matrices P, Q such that $P A P^{-1}, Q B Q^{-1}$ are diagonal matrices exhibiting the invariant factors $a_{i}, i=1,2, \cdots, \alpha$, and $b_{i}, j=1,2, \cdots, \beta$ of A, B, respectively, along the

[^0]main diagonal, then there exists a solution X of Eq. (1) for $-\infty<a \leq x \leq b<+\infty$ except at the zeros of the invariant factors of A.

Since the matrices of (2) are similar,

$$
\begin{align*}
& {\left[\begin{array}{ll}
P & 0 \\
0 & Q
\end{array}\right]\left[\begin{array}{ll}
A & C \\
0 & B
\end{array}\right]\left[\begin{array}{cc}
P^{-1} & 0 \\
0 & Q^{-1}
\end{array}\right]=\left[\begin{array}{cc}
P A P^{-1} & P C Q^{-1} \\
0 & Q B Q^{-1}
\end{array}\right]=M} \tag{4}\\
& {\left[\begin{array}{ll}
P & 0 \\
0 & Q
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]\left[\begin{array}{cc}
P^{-1} & 0 \\
0 & Q^{-1}
\end{array}\right]=\left[\begin{array}{cc}
P A P^{-1} & 0 \\
0 & Q B Q^{-1}
\end{array}\right]=N}
\end{align*}
$$

and the matrices M, N are similar. Form the equation

$$
\begin{equation*}
D U^{\prime \prime}+U F=G \tag{5}
\end{equation*}
$$

where $D=P A P^{-1}, F=Q B Q^{-1}, G=P C Q^{-1}$. Consider Eq. (5) element-wise, namely,

$$
\begin{equation*}
d_{i i} u_{i i}^{\prime \prime}+u_{i i} f_{i j}=g_{i i}, \quad(i, j=1,2, \cdots, n) \tag{6}
\end{equation*}
$$

where $u_{i j}^{\prime \prime} \varepsilon U^{\prime \prime}, u_{i j} \varepsilon U, d_{i i} \varepsilon D, f_{i j} \varepsilon F$, and $g_{i j} \varepsilon G$.
Next to show that Eq. (6) always has a solution. W. E. Roth* has shown that if the matrices of (2) are equivalent, then for the elements $g_{i j}$ of G : (i) $g_{i i}$, for $1 \leq i \leq \alpha$, $1 \leq j \leq \beta$, is a multiple of the greatest common factor of $d_{i i}$ and $f_{i j}$; (ii) $g_{i j}$ for $1 \leq i \leq \alpha$, $\beta<j \leq n$, is a multiple of $d_{i,}$; (iii) $g_{i j}$, for $\alpha<i \leq n, 1 \leq j \leq \beta$, is a multiple of $f_{i j}$; (iv) $g_{i j}$, for $\alpha<i \leq n, \beta<j \leq n$, is identically zero. Thus $g_{i j}$ cannot be different from zero when both $d_{i i}, f_{i i}$ are identically zero, and in each of the four cases above, (6) has a solution.

Let $U=P X Q^{-1}$, then $U^{\prime \prime}=P X^{\prime \prime} Q^{-1}=\left(P X Q^{-1}\right)^{\prime \prime}$, so Eq. (5) may be written as

$$
\begin{equation*}
\left(P A P^{-1}\right)\left(P X^{\prime \prime} Q^{-1}\right)+\left(P X Q^{-1}\right)\left(Q B Q^{-1}\right)=P C Q^{-1} \tag{7}
\end{equation*}
$$

Multiplying (8) on the left by P^{-1} and on the right by Q, we have Eq. (1); thus $X=$ $P^{-1} U Q$ is a solution of Eq. (1).

FURTHER PROPERTIES OF CERTAIN CLASSES OF TRANSFER FUNCTIONS: II**

By A. H. ZEMANIAN (College of Engineering, New York Universiiy)
This note is a sequel to a previously published paper [1]. The notation and terminology used here is the same as before. The purpose of this note is to point out a consequence of some previously published results [1, 2], which is immediately applicable to rational transfer functions that have no poles in the right-half plane and have at least twice as many poles as zeros. Such transfer functions arise quite commonly in physical systems.

[^1]
[^0]: *Received October 12, 1959; revised manuscript received August 23, 1960.

[^1]: ${ }^{*}$ W. E. Roth, The Equation $A X-Y B=C$, and $A X-X B=C$ in Matrices, Proc. Am. Math. Soc. 3, 392-396 (1952).
 **Received October 5, 1960.

