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where h*(z) is regular in Se , including infinity, such that on C

re h*(z) = g(x, y) - k - ~ ^ - m<j>*0 ,

and 0,(2) is regular in S, , having singularities only in S, .
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ON MATRIX DIFFERENTIAL EQUATIONS*
By JOHN JONES, JR., (Institute oj Technology, Air University)

The purpose of this note is to obtain a necessary condition and a sufficient condition,
of an algebraic nature, for the matrix differential equation

AX" + XB = C, (1)

where all matrices considered are w-square, to have a single-valued solution. Capital
letters denote matrices and prime denotes the derivative with respect to x. The elements
of A, B, C belong to the polynomial domain *5[x] of the field 5 of real numbers. I is the
identity matrix.

Theorem 1. If a solution matrix X of Eq. (1) exists, then the following pair of matrices

A C
0 B

are equivalent.
Proof. Clearly

I -X
0 /

A C
0 B

I -X"

0 7

A 0
0 B

A C -AX" -XB
0 B

(2)

A 0

0 B
(3)

and so the matrices of (2) are equivalent.

Theorem 2. If the matrices of (2) are similar and there exist non-singular constant
matrices P, Q such that PAP'1, QBQ'1 are diagonal matrices exhibiting the invariant
factors a, , i = 1, 2, • • • , a, and b, , j = 1, 2, • • • , /3 of A, B, respectively, along the

*Received October 12, 1959; revised manuscript received August 23, 1960.



158 NOTES [Vol. XIX, No. 2

main diagonal, then there exists a solution X of Eq. (1) for — <» < a < x < b < + °°
except at the zeros of the invariant factors of A.

Since the matrices of (2) are similar,

P 0
0 Q

P 0

0 Q

A C
0 B

fA 0

p-1 0

. o Q'1

P1 0

o Q-\

PAP'1 PCQ'1

0 QBQ'1

PAP'1 0

0 QBQ'1

= M

= N,

(4)

10 B
and the matrices M, N are similar. Form the equation

DU" + UF = G, (5)
where D = PAP'1, F = QBQ'1, G = PCQ'1. Consider Eq. (5) element-wise, namely,

diiliii "l- Wj',-/,-,- Qn , (t, j 1, 2, * * * | Tl) , (6)

where u'/j t U", wif e U, dit t D, t F, and gu e G.
Next to show that Eq. (6) always has a solution. W. E. Roth* has shown that if

the matrices of (2) are equivalent, then for the elements gu of G: (i) gii , for 1 < i < a,
1 < i < /3, is a multiple of the greatest common factor of dit and ; (ii) gif for 1 < i < a,
0 < j < n, is a multiple of dit ; (iii) gu , for a < i < n, 1 < j < /3, is a multiple of
fa : (iv) gu , for a < i < n, 0 < j < n, is identically zero. Thus <?,, cannot be different
from zero when both d{i , /,, are identically zero, and in each of the four cases above,
(6) has a solution.

Let U = P X Q'1, then V" = PX"Q~x = (PXQ'1)", so Eq. (5) may be written as

CPAP'1)(PX"Q-1) + (PXQ-1) (QBQ") = PCQ'1. (7)
Multiplying (8) on the left by P-1 and on the right by Q, we have Eq. (1); thus X =
P'1 UQ is a solution of Eq. (1).

FURTHER PROPERTIES OF CERTAIN CLASSES OF
TRANSFER FUNCTIONS: II**

By A. H. ZEMANIAN (College of Engineering, New York Universiiy)

This note is a sequel to a previously published paper [1], The notation and termi-
nology used here is the same as before. The purpose of this note is to point out a conse-
quence of some previously published results [1, 2], which is immediately applicable to
rational transfer functions that have no poles in the right-half plane and have at least
twice as many poles as zeros. Such transfer functions arise quite commonly in physical
systems.

*W. E. Roth, The Equation AX — YB = C, and AX — XB = C in Matrices, Proc. Am. Math.
Soc. 3, 392-396 (1952).
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