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1. Introduction. The Cauchy-Voigt [1] equations of extensional motion of aniso-
tropic, elastic plates may be written as

(Li + P02)u + L5w = 0, ^

Lull + (L3 + pif)w = 0,

where u and w are the components of displacement in the plane of x and z (the plane of
the plate), 0 = id/dt and the Lv, p = 1, 3, 5, are the quadratic operators,

d2 d2 d2
Ll = 711 d? + 2715 d^dz + 755 d? '

U = 7*5 + 2735 ^ + T33 , (2)

U = 71. ^2 + (713 + 755) ^ + 735 ^2-

In (2), the yPQ are the elastic stiffnesses relating the stress-resultants (r„) and the strains
(e„) according to

Tp 7 paea j 7pa 7«p > P) Q (3)
where

_ du _ dw du dw
£l da; ' 63 dz ' 60 dz dx

In the case of an isotropic plate,

7ll = 733 t 2755 = 7n 7i3 , 7l5 = 735 = 0

and Lamp's [2] representation

_ dip d\p _ dip d\p .
U ~ dx dz ' W ~ dz + dx ^

reduces solutions of the displacement-equations of motion to solutions of

7nVV + = 0, 755VV + pftV = 0. (5)
In a study of the three-dimensional equations of anisotropic elasticity, G. F. Carrier

[3] considered a special elastic symmetry which, in the present context, corresponds to
an orthotropic plate (y15 = y35 = 0) with the additional condition

(711 - 755X733 — 755) = (713 + 75s)2 (6)
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and showed that, if

\l/2
U = (7n - T55)1/2 fx ~ (733 - Taa)1 ^ ,

(7)
1/2 d<p , , ,1/2 dip

w = (733 - Tss) + (in - Tss) dx

solutions of

7n ^2 + 733 + pSiV = 0, 755VV + pOV = 0 (8)

yield, through (7), solutions of the displacement equations of motion.
In this paper, we find the most general representation, of this type, for the Cauchy-

Voigt equations; and we show, with the example of quartz, how to find orientations of
crystal plates which have constants of elasticity that satisfy the conditions required for
reduction of the equations of motion to the simpler forms.

2. Generalization of Carrier's representation in two dimensions. Let

u = {a"ic + a" =

w = (a3i^ + a33l)x = M3X'

expecting that there will be two sets of constants ai# and, hence, two functions x- Then
(1) become

[(Li + pit) + L5M3]x = 0, [(L3 + pU2)M3 + L5ilfj]x = 0. (10)

Because of the presence of the term pP.2, the only linear operator that can be a factor
of the operator in brackets in the first of (10) is Mx and in the second of (10) is M3 .
Hence, if the bracketed operators in (10) are each to be expressed as a product of a
linear and a quadratic operator, Mx must be a factor of L5M3 and M3 must be a factor
of L-M\ • Accordingly, we set

M,M3 = L5 . (11)

Upon equating coefficients of like derivatives in (11), we find

Oll®31 = 715 ) <l33®13 = 735 ; ®utt33 "I" &i3tt3i = 7l3 ~1" 753 • (12)

If (12) are satisfied, (10) become

+ Ml + p02)x = 0, M3(L3 + MI + P02)x = 0. (13)

Now, we require the quadratic operators to be the same in both of (13). Hence, we set

Li + Ml = L3 + Ml = N, say, (14)
where

N'h'£-+2,"dT*+i-!?
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and the b„ are constants to be determined. Then solutions of

{N + pfi2)x = 0 (15)

will yield, through (9), solutions of the Cauchy-Voigt equations.
Upon equating coefficients in (14), we obtain

7n + «3t = 755 + an = bi ,

733 + Gl3 = 755 + ^33 = ^3 , (16)

7lS "I" ®33®31 = 735 "1" ®11®13 = •

Equations (12) and (16) contain six relations, among the four as, and the yVQ , whose
consistency requires two relations among the yva . Upon elimination of the a,-,- from (12)
and (16), these relations are found to be

(711 — 7 55) (733 — 755) = (713 + 7s5)2 — (710 + 735)2,

(713 "I" 75o)(7l5 735) = 735(711 755) 715(733 755)'

If 7i5 = 7s5 = 0, the second of A is satisfied identically and the first of A reduces
to (6).

Subject to conditions A, (12) and (16) may be solved for the a,,- and bp . We note,
first, that the first two of (12) and the last two of (16) are satisfied by a13 = a31 if 6, 5^ 0
and by an = — a33 if b5 = 0. Hence there are two sets of solutions:

au = ±7is[(7n — 733)/(715 ~ 735)]1/2

a33 = ±735[(7.. - 73s)/(7i5 - 7325)]1/2

O13 = OS31 = ±[(7l5 735)7(711 733)] (17)

61 = 7n + (715 — 7 35)/(711 — 733)

b3 = 733 + (715 ~ 735)/(711 — 733)

b5 = 7is + 735

and

®ii — I33 — ±l'[(7i5 73s)/(7h 733)]

Ol3 = ±1735 [(7ll - 733) /(7l5 - 7325)]1/2

a31 = Tz'7i5[(7ii — 73s)/(7i5 — 7325)]1/2 (18)

bi = b3 = 755 — (715 — 735)/(7ll — 733)

65 = 0

in which either the upper or lower signs may be taken, without loss of generality.

3. Consequences of conditions A. Conditions A take a simpler form when expressed
in terms of the elastic compliances, sPQ, defined by

«p = svtTa ; sMa = sra ; p,q = 1, 3, 5. (19)



114 R. D. MINDLIN AND H. L. COOPER [Vol. XIX, No. 2

From (19) and (3),

7™ = SJ A, (20)
where Spa is the cofaetor of element spq in the determinant A = J.?,,,,!. When (20) are
substituted into conditions A, the latter become

S11 4* S33 = 2S13 + S55 , S15 = S35 (A.')

and we note that conditions A' make

A = S55(SuS33 S13 S15).

Then, with <p = ±x/A1/2 for (17) and \p = ± z'x/A1/2 for (18), we find that (9) and (15)
become

and

, .dip dip d\p , . d\p
U ~ (Sl3 S3s) dx + Sl5 dz + Sl5 dx + (Sl3 Sn) dz '

dip . .dip . .dip dip
W ~ Sl5 dx + (Sl3 Sll) dz (Sl3 S33) dx 8,5 dz

o o, d2<P 1 „ _ PA djP
533 dx2 ^Sl5 dx dz + *" dz2 ~ s56 dt2 '

dV aV d2j
dx2 + dz2 ~ P*55 dt2 '

(21)

(22)

We now rotate to new axes xA , zA according to

xA = x cos — z sin , zA = x sin + z cos M'a (23)

in order to eliminate the cross term in the first of (22). The strain-stress relations, re-
ferred to axes xA , zA are written as

€p SpqTp , p, q 1, 3, 5,

where, with s = sin , c = cos A ,

Sii — snc -|- S33S -f- (2^13 -]- s55)s c 2s15sc 2s3ss c,

S33 = sns4 + s33c4 + (2s13 + s55)s2c2 + 2si5s3c + 2 s35sc3,

S55 = 4(Sn -)- S33 2s13)s c -f- s55(c s ) -f- 4(s15 S3s)(c s )sc,

Si3 = (Sn + S33 — sS5)s2c2 + s13(s4 + c4) + (s15 — s35)(c2 — s2)sc,

s£.5 = 2sns3c — 2s33sc3 -)- (2s13 + s55)(c" — s2)sc + s15(3s2c2 — s4) + s35(c4 — 3s2c2),

sts = 2snsc3 — 2s33s3c — (2s13 + s55)(c2 — s2)sc + s13(c4 — 3s2c2) + s35(3s2c2 - s4).

Now, conditions yl' make

S13 = S13 , S55 = S55 , Sn -f- S33 = Sn -f- s33 (24)

and if, in addition, we set

tan 2xIr i = 2s15/(s33 Sn) (25)
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we find also

sn s33 = (sn s33) sec 2\fr/t , (26)

sf5 = S?5 = 0.

With (21) and (24)-(26), the components of displacement, referred to axes xA and zA
become

Ua = (»f, - 4) + (s?3 - sfOdxA (52.4

= (sf3 - si1) - (sf3 - S33)
OZA uXa

Also, the differential equations (22) transform to

A , A dj5 _ , A A A A X d2<f
"33 a 2 T Sn . 2 — PV.S11033 0x3813; «

(27)

(28)
dV , _ A
to; + ^a2 ~ p 55 3i2"'

If we were to convert from constants s*Q to y*a by means of the inverse of (20), we
should find that (28) are the same as (8) and that (27) are the same as (7), except for a
constant factor. Thus, conditions A reduce the general anisotropic plate to an ortho-
tropic plate satisfying Carrier's condition (6).

4. Slowness vector. Returning to Eqs. (1), we insert the displacements

u = A exp [iu(£x + fz — <)], w = C exp [iu(£x + fz — f)] (29)

corresponding to straight-crested waves. The resulting characteristic equation, which
must be satisfied by the components £, f of the slowness vector [4], is

(YhS" + 2715£f + 755 f2 — p) (7 55^2 + 2735^ + 733f2 — p)

~~ [7iof + (713 + 75s)£f + 735f2]2 = 0. (30)

With £, f as real Cartesian coordinates, (30) is, in general, the equation of a pair of four-
lobed curves. However, if conditions A are satisfied, the discriminant of (30) is a perfect
square and the curves are a circle, corresponding to the potential \p, and an ellipse,
corresponding to <p, with principal axes oriented in accordance with (25).

The discriminant of (30) is also a perfect square if

(711 ~ 755) (713 + 755) = 2715(7i5 — 735), (£)

(733 — 755X713 + 755) = 2735(735 — 715).

In this case the locus of the tip of the slowness vector is a pair of orthogonal ellipses
associated with waves whose properties are described in the following section.

5. Consequences of conditions B. In the case of conditions B, we first perform a
rotation to new axes

xB = x cos ~ z sin , zB = x sin + z cos ■
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Referred to these axes, the stress-strain relation is
B   B B

Tp ypqtq y

where, with s = sin , c = cos ~&B ,

7?x = TnC4 + 733s4 + 2(7,3 + 2755)sV — 4715sc3 — 4735s3c,

y*3 = 7 us" + 733c4 + 2(713 + 2755)s2c2 + 4715s3c + 4735SC3,

7?s = (711 + 733 — 27 13)s2c2 + 7 55(c2 — s2)2 + 2(715 — 73 s)(c2 — S2)sc,

7?3 = (711 + 733 — 4755)s2C2 + 7i3(s4 + c) + 2(715 — 735)(c — s2)sc,

735 = 7ii«3C — 733SC3 + (713 + 2755) (c2 — s2)sc + 7i5(3s2C2 — S4) + 735(c4 — 3s2c2),

7?. = 7nSC3 — 733S3C — (713 + 2755) (c2 — s2)sc + 7is(c4 — 3 sV) + 7ss(3s2c2 — s4).

Now, if we set tan 2^ = (713 + 7.55)/(735 — 7is) and apply conditions B, we find

B B B \ B r\
7X5 = 735 = 7x3 + 755 = 0.

Hence, if uB and wB are the components of displacement referred to axes xB and zB , the
equations of motion become

B Ub I B 9 Ub d UB B d WB , B 9 d WB /nt\
711 air + 755 9^1 - p Tt2 ' 755 + 733 dzl - p W (31)

and, consequently, the introduction of displacement-potentials <p and ^ is unnecessary.
Equations (31) have the curious property that, in the waves defined by them, the

directions of the respective displacements are fixed: independent of the wave-normals.
The mechanism which produces this phenomenon may be identified by noting that,
under conditions B,

B B r B | /B/B\B-\//BB B B \
= 733 iTl + (755/733) T3J/(7ll733 — 755755),«1

B / B\ BB B r B \ / B / B \ B-\ / / B B B B \
e3 = 7iilt3 + (755/711)TiJ/(7ii733 ~ 75575s)-

Hence, since the conditions of positive-definiteness of the strain-energy-density require
B v a B w a B v a B B B B ^ a

7ll > 0, 733 > 0, 755 > 0, 7xx733 — 755755 > 0,

both Poisson's ratios, v" = — and v® = — y"Jy![ , must be negative and in the
ratios indicated. These are properties unlikely to be found in natural crystals.

6. Application of conditions A to quartz. The constants, say s"a, of a plate cut from
a crystal, at an arbitrary orientation with respect to axes of reference fixed in the crystal,
may be expressed in terms of two angles of rotation, say © and $, and the constants,
say s°mn , m, n = 1, • • • 6, associated with the axes of reference. When the expressions
for the s"Q , in terms of the s°„ , © and $, are inserted in conditions A', in place of the
constants sp„ appearing there, a pair of simultaneous, transcendental equations in 0
and $ is obtained. If there are any real roots of the pair of equations, they give the
orientations of plates whose constants s"Q satisfy conditions A'.
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In the case of quartz, the compliances associated with reference axes x0 , y0 , zn , in
accordance with the I.R.E. Standards [5], are

s°u = s°2 = 12.77, s? 2 = -1.79,

si = 9.60, a? 3 = s°23 = - 1.22,

s° 4 = «L = 20.04, s°4 = -s2°4 = isle = 4.50,

si = 2(Sn - A),

& = 8? 6 = 4, = & = A = S3°, = & = & = sl = 0,
where the numerical values, in units of 10~~12 (meter)2/newton, are those given by Bech-
mann [6].

A rotation of coordinates about the axis of x0 to axes

x' = x0 , y' = y0 cos 0 + z0 sin 0, z' = —y0 sin 0 + z0 cos 0

gives formulas for the thirteen non-zero compliances s'mn , m, n = 1, • • • 6, in terms of
the s°mn and 0, as tabulated by Cady [7].

A further rotation, about the axis of z', to axes

x" = x' cos + y' sin y" = —x' sin <E> + y' cos <£, z" = z'

gives for the six, of the twenty one, constants which we require:

= Sn cos2 $ + s2'2 sin2 <3? — (sn + s£2 — 2s[2 — See) sin2 $ cos2

S55 = S44 sin2 $ + S55 cos2 $,
(32)

s'A = s'13 + (s2'3 - si3) sin2 $,

sU = s3'4 sin $,

sis = S24 sin $ — (S24 — Si'4 — s,'e) sin $ cos2 $,

in which the s'mn are given in terms of the s£,„ and 0 by Cady's [7] formulas.
We now suppose that all of the analysis in Sees. 2 and 3 was performed in the plane

of x" and z", so that the constants s„„, appearing there, are replaced by s'v[. Then, when
(32) are inserted in conditions A', we find

[s?4(3 sin2 0 — 4 cos4 0) + 2k sin3 0 cos 0] sin3 $

— [s°4(4 sin4 0 — 3 cos2 0) + 2k sin © cos3 0] sin $ = 0,

[2s?4(3 + cos2 0) sin 0 cos 0 — k sin4 0] sin4 $

+ 6[s°4(2 cos2 © — 1) sin © cos © + k sin2 © cos2 0] sin2

— 2s"4(3 + sin2 0) sin ©cos © — cos4 0 = 0,
where k = sh + s°3 — 2s":} — s44 . These equations have the four pairs of roots 0 and
$ given in the first two rows of the accompanying table. The next six rows give the
values of the constants s^ computed from (32). The next row gives the values of >pA
computed from (25), with replaced by sand the remaining rows give the values
of the constants spAa , referred to the axes xA and zA defined in (23).
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The first column in the table describes the well known "Z-cut" of quartz for which
the Cauchy-Voigt equations reduce to isotropic form; i.e., the constants satisfy the
conditions

= S33 , s'd = 2(fill - Sl'3), all = Sl'5 = 0

and Eqs. (4) and (5) apply. This cut has been studied in detail by Petrzilka [8], Bechmann
[9] and Ekstein [10]. Modes of vibration of the remaining three cuts may be studied
by means of Eqs. (27) and (28).

As anticipated, no cut of quartz has constants of elasticity that satisfy conditions B.

TABLE

Orientations (®, <i>, ty) and compliances (sPq, 10-12 meter1 /newton)
of the four cuts of quartz which satisfy conditions A.

I II III IV
0 90° -9.65° 18.79° 18.79°
4> 0 0 58.62° -58.62°
sn 12.77 12.77 12.52 12.52
sn 12.77 9.52 9.77 9.77
S55 29.12 23.27 23.27 23.27
s{'3 -1.79 -0.49 -0.49 -0.49
s'3l 0 0 -0.87 0.87
sis 0 0 -0.87 0.87
^ 0 0 16.17° 73.83°
sft 12.77 12.77 12.77 9.52
si3 12.77 9.52 9.52 12.77
sis 29.12 23.27 23.27 23.27
si, -1.79 -0.49 -0.49 -0.49

0 0 0 0nA

sA 0 0 0 0
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