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A VARIATIONAL PROBLEM RELATING TO COOLING FINS
WITH HEAT GENERATION*
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1. Introduction. Cooling fins are used in heat exchange apparatus to increase the
rate of heat transfer. To economize in the design, we wish to know the shape of the
fin which gives the maximum dissipation of heat for a given weight of the fin. For pure
conduction fins, a criterion for this optimum fin problem was proposed by Schmidt [1]
and recently proved by Duffin [2], Cooling fins are also used in atomic reactors where
heat is produced inside the fin as a result of atomic reaction. The question immediately
arises: What is the optimum fin geometry in such cases? The answer to this question
becomes more important in view of the industrial trend of trying to develop airborne
reactors where the weight limitation is the most significant problem.

In the first part of this paper, the problem of cooling fins with heat generation is
recast in a form suitable for treatment by the calculus of variations. The heat generation
function which is not clearly known in our present state of knowledge is assumed as
a function of the coordinate along the fin. The relation of the temperature to the heat
generation is assumed to be linear. Euler equations are obtained by formal variational
methods. Contrary to the case for pure conduction fins, the equations are not linear.
General solutions to the Euler equations cannot be obtained in explicit form. However,
sufficient conditions are derived for solving this optimum fin problem.

The second part of this paper concerns the solution when the heat generation function
is linearly dependent on the temperature only. The temperature is found to be a hy-
perbolic sine function. This result is used to derive explicit expressions for the fin shape
and for the maximum heat dissipation, for the cases of a rectangular fin and a circular fin.

2. The variational problem. Under the assumption that the heat generated is
linearly proportional to the temperature u, the governing equation for a cooling fin
can be written as

q{x)y{x)]u, (1)

where the known functions p(x) and q(x) representing the surface convection and heat
generation effects respectively are positive and continuous.

The function y(x) related to the fin shape satisfies the conditions

yix) is differentiate (2)
y(x) > 0 for 0 < x < b (3)

and
r-i>

y{x) dx = K, a given constant (fin volume), (4)
/Jo

where b is the fin length.
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Also u is to satisfy the two boundary conditions

u — 1 at x = 0 (5)

y(x) ^ = 0 at x — b. (6)

Under these conditions, we seek two functions u(x) and y(x) and the constant number b
such that the cooling effect of the fin H defined as

H = [ [p(x) - q(x)y(x)]u(x) dx (7)
J 0

gives a maximum.
Further we restrict the function y(x) such that

p(x) - q(x)y{x) > 0. (8)

Thus the cooling effect of the fin is ensured.
The solution of the problem can be made to depend on the following integral

e=L Ml)+(p-qy)u2]dx- (9)
Integration by parts and use of (1), (5) and (6) gives

L v(%)dx - ~L(y^)dx ■ ~l(°_ l)(v ~m),,dx■
Substituting this in (9) shows that

E — [ (p — 1V)U dx. (10)
Jo

In other words, if u satisfies (1), (5) and (6), then E = H.
Equation (10) suggests that we minimize the integral E, treating u and y as inde-

pendent variables, not supposing that u and y necessarily satisfy Eqs. (1), (5) and (6).
Note that under the conditions (3) and (8), the integrand in (9) is never negative and
hence E has a finite lower bound.

We proceed formally, considering a variation of E(u, y) due to a variation of u and y
from the assumed minimizing values. First only u is varied. The Euler equation resulting
for any admissible variation of u is the governing equation (1). Now consider a variation
of E resulting from a variation in y. Thus

sE = L 4(!)_ dx = °-
Because of condition (4), we also have

SK = f Sy dx = 0.
Jo

It follows that the integrands of SE and SK must be proportional. Thus

(du/dx)2 — qii = X. (11)
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Integrating Eq. (1) and use of (6) gives

du
y dx = - f (p - qy)u dx. (12)

J x

In view of relations (3), (8) and (12), Eq. (11) can be written as

du/dx = ~(qu2 + X)1/2, (13)

where X is a constant (Lagrange multiplier). The minimum of E is obtained from the
functions u and y which simultaneously satisfy Eqs. (1), (5), (6) and (13).

Because the non-linearity of Eq. (13) prevents us from finding explicit solutions, a
general procedure for solving the optimum fin problem will be given before specific
examples are discussed.

Case (a). Optimum fin. After solving Eqs. (1), (5), (6) and (13), we will obtain
a one parameter family of solutions u(x, X) and y(x, b, X) which, if substituted in Eqs.
(4) and (7), give K = K(b, X) and H = H(b, X). Hence we have H as a function of b
and X which in turn are connected by K. Maximizing H while holding K constant will
give the optimum fin length. The optimizing parameter X can then be evaluated from
K(b, X). ■

An alternate method which gives rather simple conditions for the optimum solutions
is obtained as follow. In deriving the above variational result, the fin length b was
held fixed. However, in the problem stated, b should be allowed to vary also. For this
purpose we consider the function F, which is equivalent to the integral E and the sub-
sidiary condition (4), defined by

F(u, y,b) = E - \K = ^ \v^) + ~ QV^ ~ x2/] dx.

The variation in F resulting from variations in u, y and b is

sF~2l [9l(^)+<i'-w)"s"]'fe+Z 4(f)
+Ml) +(" - - x»]fa L •

Integrating by parts gives

fb du (d Su\ du b rh d ( du\ ,

The integrated part vanishes on account of (6) and Su = 0 at x = 0. Substituting this
into the expression for 8F gives

5F - -2 /o Su[£ [y |) - (p - W)«] dx + [ Sy[(^) - yl - x]

+ [f(|) + (p - iy)u* - Sx jo ■

Of course SF = 0 for any admissible variations Su, Sy and Sx. The two integrands on
the right give the results already obtained previously. The integrated part vanishes
at the lower limit because Sx = 0 at x — 0. At the upper limit, Sx ^ 0. Use of (13) gives



248 CHEN-YA LIU [Vol. XIX, No. 3

y{du/dx)2 + (p — qy)u2 — \y = pu2 = 0 at x = b.

Therefore,

u = 0 at x = b. (14)

Use of (6), (13) and (14) gives

y = 0 at x = b. (15)

Because of (2), (1) can be written as

d2u , dy du , ,
yd^ + dxTx = {v~qy)U-

From (14) and (15), it is seen that

dy/dx = 0 at x = b. (16)

Thus Eqs. (1), (5), (13), (14) [or (16)] and (15) in conjunction with (4) furnish the
complete solution for the optimum fin problem.

Case (b). Fixed length fin. In practical design, sometimes we wish to restrict the
length of the fin. If the maximum length permitted is B, the additional restriction is

b < B. (17)

The solution from case (a) is valid provided the optimizing value of b satisfies (17).
Otherwise the solution required is simply for the case of fixed b = B. The procedure
for affecting a solution is already stated in the first sentence of case (a) except letting
b = B. The parameter X in u(x, X), y(x, B, X) and H(B, X) is determined from K(B, X).

3. Heat generation independent of position. If q is assumed to be constant, Eq. (13)
can readily be solved. For convenience, we define the following notations

1/2a = q ,

A = 1 + (1 + X/a2)1/2,

Hv, ~) = Ae'av - XeaV(a24),

$(u, +) = Ae-av + Xe"7(a A),

*(v, —) = $(v, —)$(v, +),
¥(17, +) = 4V1*' + XV"V(a A2).

(i) Fixed length fin. From (13) and (5)

u = i$(z, -) (18)

use of (18) in (1) with (6) results in

y = a_1[$(a;, +)]"2 [ p(x)V(x, -) dx. (19)
J x

The parameter X is determined from (4) which becomes

K = loTl(a + X)-1/2 [ p(x)$(x, —) sinh ax dx. (20)
Jo
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Then from (7)

H = E = \a{a + A)"1/2 f" p(z)9(z, -) dx. (21)
Jo

As a —> 0, Eqs. (18), (19), (20) and (21) become

u = 1 - \U2x, (18a)

V — f (X~1/2 — x)p(x) dx, (19a)

K — f (X~1/2 — x)p(x)x dx, (20a)
Jo

H = f (1 - \1/2x)p(x) dx, (21a)
Jo

which except for a slight change of notation are the same results obtained from Schmidt's
criterion [2],

(ii) Optimum fin. Equation (18) is still valid. Substituting (14) in (18) gives

(X/a2)ODtimum = (sinh ab)~2.

Substituting this relation in Eqs. (18), (19), (20) and (21), and changing B into b give
the corresponding relations for optimum fins

u = sinha(6 — a;)/sinha6, (22)

y = \cTx [cosh a(b — x)]-8 J p(x) sinh 2a(6 — x) dx, (23)

K = a-2 (cosh ab)'1 / p(x) sinh a(b — x) sinh ax dx, (24)
Jo

H = (sinh 2ab)~l f p(x) sinh 2a(b — x) dx. (25)
Jo

It can easily be shown that as a —> 0

u = 1 — x/b, (22a)

y = f (b — x)p{x) dx, (23a)
J x

K = [ (6 — x)p(x)x dx, (24a)
Jo

H — f (1 — x/b)p(x) dx, (25a)
Jo

which are the results from Schmidt's criterion [2],
4. Rectangular fin. The variational result just obtained is now applied to specific

examples of cooling fins. First we consider a fin in the shape of a rectangular plate whose
sides are of lengths a and b. Let x denote the distance to one of the sides of length a.
The thickness of the plate is taken to be given by a function y(x). Heat is supplied at
constant temperature to the side at x = 0. By a suitable choice of units, the temperature
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at this edge may be taken as unity, and the ambient temperature may be taken as zero.
Let k be the coefficient of thermal conductivity of the material of the plate, h be the
combined radiation and convection coefficient of the surface of the plate, and g be
the constant heat generated per unit volume of the plate per unit temperature change.
It is then customary to assume that the temperature u(x) satisfies

fx [ky{x) I] = 2hu ~ gyU' (26)

Clearly, Eq. (26) can be written in the form (1) with p = 2h/k = c, where c denotes
another constant and with a = g/Tc. Moreover, u satisfies both boundary conditions
(5) and (6).

A question in the design of such a fin is the choice of y(x) and b to maximize the
heat conducted out of the fin base at x — 0 for a given weight fin. On account of (12),
this heat is

, du = ak (p — qy)u dx = akH. (27)
t-0 Jo

The volume of the fin is a /o y dx = aK. Hence the solution is for the case when p is
a constant.

Substituting c for p in Eqs. (23), (24) and (25) gives the solution for the optimum fin

y = \ca~2 tanh2 a(b — a;), (28)

H = ica'1 tanh ab = %cb - a2K, (29)

where b is determined from the transcendental equation

ab — tanh ab = 2aK/c. (30)

If the maximum length permitted is B and if B is smaller than the b determined
from (30), the solution is then obtained from Eqs. (19), (20) and (21)

y = ica-2Mx, +) - *(B, +)]/[$(*, +)]2, (31)

H = (1/8)c(a2 + X)"1/2[2(2 + X/a2) - *(B, +)], (32)

where X is determined from

(4/X)$(5, +)[e~aB - 1 a{a2 + X)"1/2$(5, +)] = (4aK/c) - 2B/a. (33)

5. The circular fin. We now consider a fin in the shape of a circular plate. Let
<(r) be the plate thickness where r denotes the radial distance. Then the basic differential
equation is

j^7cr/(r) = 2hru — grtu. (34)

Heat is supplied to this fin at an inner radius, say r = a. It is then convenient to in-
troduce the variable x = r — a, which gives the distance to the inner radius. The dif-
ferential equation becomes

~ ^(a; + a)t = c(x + a)u — q(x + a)tu.- (35)
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The equation is in the form (1) with y = (x + a)t and p = c(x + a). The boundary
conditions (5) and (6) apply as before if we take the outer radius to be a + b.

The cooling rate of the fin is given by 2 irk (p — qy)u dx = 2-trkH. The volume
of the fin is 2x y dx = 2tK. Again, the solution is given by the relations in Sec. 3.

Substituting p = c{x + a) in Eqs. (23), (24) and (25) results in the solution for an
optimum fin

y = lca~2[2{x + a) tanh2 a(b — x) + oT1 tanh a(b — x) — (b — x) sech2 a{b — x)], (36)

H = leaf 2(1 + 2aa tanh ah — ah sech abc sech ab), (37)

where b is calculated from

(6 + 2a)(ab — tanh ab) = 4a K/c. (38)

If there is a maximum permitted radius, say a + B, then Eqs. (19), (20) and (21)
can be applied as before.
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