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A THEORY FOR THE SQUARE GUARDED HOT PLATE—A SOLUTION OF THE
HEAT CONDUCTION EQUATION FOR A TWO LAYER SYSTEM*

By
I. G. DONALDSON
Dominion Physical Laboratory, Lower Hutt, New Zealand

Summary. A theoretical treatment is given for the action of the guarded hot plate
apparatus used for measuring conductivities. The flow of heat through the metal hot
plate itself, and the effects of temperature unbalance between hot plate and guard plate
are both taken into account. The temperature at any point in the sample or in the heater
plate may be determined. The theory is comprehensive and any of the dimensions or
controlling parameters may be varied in the calculation.

Introduction. Although the thermal conductivity of insulating materials has been
determined for many years with the guarded hot plate apparatus, it was not until recently
that any attempts have been made to assess theoretically the errors associated with
the use of this apparatus. Without the benefit of theoretical assessments the standards
that have been specified by the ASTM [1], RILEM [2] and the British Standards Insti-
tution [3] have from necessity been drawn up relatively arbitrarily. Thus they differ to
some extent one from another and in the light of recent theoretical and experimental
work, do not appear to be sufficiently stringent for the 19, accuracy often demanded
of the guarded hot plate apparatus.

Figure 1 illustrates the layout of a typical ‘‘guarded hot plate”. Essentially, two
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Fia. 1. Schematic diagram of the guarded hot plate apparatus based on the design of the apparatus at
Dominion Physical Laboratory. The z scale has been exaggerated (X 3) to show the construction more
clearly.
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slabs of the material under test are placed one on either side of an electrically heated
metal plate. Outside again are two metal plates kept cold by a flow of water. Thermo-
couples measure the temperature difference between the hot and cold plates, and the
conductivity of the material is calculated from the measured temperature difference,
from the known rate of generation of heat per unit area of the hot plate and from the
thickness of the specimen.

In this calculation the thermal gradient and the flow of heat are presumed to be
everywhere parallel to the axis of the instrument (perpendicular to the plates) but in
fact some lateral flow of heat occurs near the outer edges of the hot plate and of the
specimen slabs. Consequently the hot plate is provided with a guard ring in imitation
of electrical practice. This is a plate in the form of a hollow square closely surrounding
the hot plate, fitted with an electric heater and kept at the same temperature as the
hot plate. In effect the hot plate becomes merely the central portion of a larger heated
plate and the transverse heat flow in its vicinity is much reduced. Of course, an attempt
is made to prevent heat passing through the edge faces of the specimens by surrounding
the whole apparatus with thermal ‘“‘insulation”, but the thermal conductivity of such
material is appreciable. Indeed thermal measurements tend to be much less accurate
than the equivalent electrical measurements, mainly because the range of thermal
conductivities of available materials is much less than the range of electrical conduc-
tivities.

Earlier experimental tests. An experimental check by Robinson and Watson [4]
involving 20 different guarded hot plates, all built to the ASTM specifications, found
that 759, of the measured conductivities were in agreement to within 39, of the mean
but some of the results were out by as much as +139, and —169,. Gilbo [5] showed
that small temperature differences between hot plate and the guard plate (which will
be called ‘“‘unbalance’) could cause considerable errors; for his guarded hot plate 0.2°F
temperature difference caused 3%, error. He also found that the ambient temperature
around the apparatus was another large source of error. Roux et al. [6] investigated
errors due to temperature unbalance of the order of 0.03°F and reported that the error
increased as the conductivity of the sample decreased; for cork (thermal conductivity
0.30 B.t.u. in/hr ft*°F) this small unbalance caused an error of more than 0.5%,. Pascal
[7] in tests on cork 10 cm thick in his 50 em X 50 em hot plate with gap filled
with araldite found that an unbalance equal to 19, of the temperature difference be-
tween hot and cold plates caused an error in conductivity of 35%,. Woodside and Wilson
[8] investigated unbalance effects and studied the dependence of these errors upon the
magnitude and direction of the unbalance, the size and design of the heater plate, the
conductivity and thickness of the specimens tested; and the temperature difference
between hot and cold plates. Errors as high as 69, were found under conditions that
satisfy the ASTM requirements.

Earlier theoretical assessments.

1. Edge heat loss.

Theoretical assessments that have been made may be divided into two groups;
those predicting errors due to edge heat loss (due that is to heat flow through the edge
insulation) and those determining the effects of temperature unbalance. Somers and
Cyphers [9] did a full analytical treatment of the problem of edge heat losses for a par-



19611 A THEORY FOR THE SQUARE GUARDED HOT PLATE 207

ticular case, where the temperature of the edge of the sample was equal to that of the
cold plate. Dusinberre [10] used a relaxation technique for a similar problem, but allowed
for some edge insulation. Pascal [7] also used relaxation to determine the minimum
value of the ratio of guard ring width to specimen thickness which would make the
transverse flow of heat negligible in the test section of the specimens, but his treatment
is two-dimensional not three-dimensional so there is some doubt about the validity
of the results.

In the treatment by Woodside [11] the cold plate is taken to be at zero temperature,
the hot plate to be at a uniform temperature 6, , and the edge faces of the sample are
taken to be at a uniform intermediate temperature ¢, . These assumptions enable a
two-dimensional solution to be found by a Schwarz-Christoffel transformation. The
solution for the particular case when e is zero agrees well with that of Somers
and Cyphers [9], but the assumption of a uniform temperature on the edge face of the
specimen seems unrealistic.

2. Unbalance effects.

The effect of a temperature difference between the hot plate and its guard ring
has been computed by Pascal [7] from the lateral flow of heat through the gap between
them. This, however, neglected the lateral flow through the specimens themselves.

Woodside [12] on the other hand based his theory for the error due to unbalance on
the simplified system shown in Fig. 2 which takes account of the specimen but ignores
the flow of heat across the gap. He justified the extension of the specimens and plate to
infinity on each side of the gap and the assumption of two-dimensional heat flow by
relaxation calculations (not given in his paper). By applying two successive Schwarz-
Christoffel transformations, Fig. 2 was transformed to a simpler system for which the
solution was readily obtained. As an experimental check the change in the total heat
flow due to a temperature difference between hot plate and guard plate was measured
on three sets of apparatus and was found to agree within 59, with the predictions of
the foregoing theory.

With the exception of the results of Pascal which are in doubt for the reasons given
above, in all the above theoretical approaches it has been assumed that the temperature
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Fi1a. 2. The artificial plate-specimen temperature system assumed by Woodside [12] to determine un-

balance effects. The solution obtained for a uniform temperature over the entire guard plate—hot plate

combination (§ = 6, say) with cold plate maintained at 8 = 0 is added to this solution. The reduced
boundary conditions and dimensions are shown.
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of the hot plate and of the guard plate are uniform over the face of each plate. This
assumption is unjustifiable, especially in cases where the guard plate temperature is
different from the hot plate temperature or where the temperature maintained outside
the edge insulation of the apparatus differs from that of the hot plate, even if some
edge insulation is used. To overcome these doubts it was felt that some account should
be taken of the heat flow in the metal plate itself. It was found that in so doing it was
possible to develop a theory which took into account both edge and unbalance effects
and also matched very closely the method by which most guarded hot plates are
controlled.

Theoretical analysis. The general arrangement of a guarded hot plate apparatus
has already been described in Fig. 1. During operation the cold plates are maintained
at some fixed temperature and the heat generated electrically in the hot plate and guard
plate is adjusted so that the temperature difference between the central areas of the
hot and cold faces of the sample is maintained constant, while the temperature difference
between corresponding points on the outside edge of the hot plate and on the inside
edge of the guard plate is kept as nearly zero as possible. A theory has been designed
to fit this practical model, with but one modification. It has been necessary to assume
that the air gap in the metal plates is actually filled with metal, i.e., the plate heater
and guard heater are sandwiched between two continuous plates. The effect of this
will be discussed later.

Because of the symmetry of the apparatus it is only necessary to consider half of it.
The theory therefore discusses the double slab illustrated in Fig. 3, consisting of a metal
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FiG. 3. A cross sectional view of the block used as the basis for the theory. ABDC is the sample and
CDFE is the metal plate.

plate of thickness £ and conductivity K,, and the sample of thickness ¢ and conductivity
K, . Each has a length and width 2a. The origin of coordinate is taken to be the centre
point of the interface.

It is assumed that the free face of the specimen is at a constant temperature T,
while heat enters the face of the metal plate at a prescribed rate @(z, y) which depends
on position. Around the sides of the compound slab there is assumed to be an insulating
layer of conductivity K; and thickness p whose outside face is kept at some temperature
taken to be zero for the theory. All other temperatures are measured in degrees Fahren -
heit from this value.

In both the sample and the metal plate the temperature obeys Laplace’s equation
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VT = 0. (0))

Boundary conditions have been prescribed for the upper and lower faces. At the
interface the temperature and the normal component of heat flow must be continuous.
An approximation will be introduced in considering the edge faces. It will be assumed
that the flow of heat across these boundaries is proportional to the difference in temper-
ature between the edge and the temperature outside the insulant. This approximation
is discussed in a later section. The parameter controlling this will be termed the co-
efficient of edge heat transfer and, writing A for this, the boundary conditions are

T=T, z=1¢, —a<z<a, —-a<y<a, @
K,.%=—Q(x,y) z = —§, —a<zr<a, —a<y<a ()
T
£+hT=O z = +a, —a<y<a, —t<z<¢, )]
aT
%—hT=O T = —a, —a <y <a, —t<z<y, 5)
aT
@+hT=O y = a, —a<z<a, —t<z<y, (6)
aT
5;—hT=O Yy = —a, —a<z<a, —t<z<y, @)
Tmetsl=Tnmple z=0, —a<z<a, —a<y<a, (8)
ory  _ (6_2) _ _ _

K,,.(az)mm—K. ) oo z2=0, a<z<a, a<y<a. 9
Q(x, y) is the heat input at the metal face and is defined as follows
—b<z<b, -b<y<b, Qx, y) = ¢
"°<y<‘b}, Q@) = 0
b<y<ec
_a<y<_°}, Qx,y) = ¢
c<y<a

_c<x<_b}, —c<y<e Qz,y) =0

b<z<e
—e<y<—c| 66y =a
c<y<aJ

_a<x<_c}, —a<y<a, Qz,y) = q . (10)

c<z<a

For either the metal sheet or the sample, the solution of Eq. (1) under the boundary
conditions 4 to 7 is of the form (see for instance, Carslaw and Jaeger [13])
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L3 L3

T=> > (M, coshl,z+ N,,sinh [,2) cosa,z cos By, (11)

r=1 s=1

where the coefficients M and N will be different in the sample and in the metal sheet
and where

Ue=oar+ 8 (12)
and «, and B, are the roots of

atanaa = h, (13)

B tan Ba = h. (149)

It is seen that a, = @, . Different symbols have been chosen for clarity. In order to
determine values of the coefficient (symbolised as M and N) fitting the boundary con-
ditions noted in Eqs. (2), (3), (8) and (9) it is convenient to note (Carslaw and Jaeger
[13]) that when o, is defined in the above manner, the function f(x) obeys the trans-
formation

= 2(eh + ) cosax [°
f@) = "Z_; @+ +h fo f(2) cos &, dz. (15)
The boundary condition (2) states that at the surface z = ¢ the temperature T equals
T, so that by applying Eq. (15), in both the 2~ and y-directions, this constant temper-
ature can be written as the function

Ty = 3 3 ATolel + W)(E + ) cos o cos By
¢ r=1 s=1 ach{(af + h2)a + h} {(ﬁf + h'z)a + h}
Similarly at the surface z = —¢ the heat input is Q(z, y) defined in detail in Eq. (10)
and this may in turn be written

sin a,a sin B,a. (16)

_ s = 4(e? + BB + ) cos d.x cos By
@, 9) = 2 2 5 + Pa + WIE + Pa + 7]

+ ¢,(sin @,a sin B,a — sin a,¢ sin B,c)}.

{go sin o,b sin B,b a7

Now at any point within the sample, the temperature distribution can be written [see
Eq. (11)] as

T =2 > (A4,, cosh [,z + B,,sinh 1,,2) cos o,z cos B.y (18)
1

r= g=1
but at the boundary z = ¢ the temperature follows Eq. (16), consequently

4To(e; + K)(B: + B°) sin a,a sin B,a (19)
a8, {(ar + h)a + R} {8 + k)a + R}

Again, at any point within the metal plate

An cosh l"g- + Br: Sinh lra{ =

L L

T =2 >(C, coshl,z+ D,,sinh I,2) cos o,z cos B.y. (20)

r=1 s=1

The value of Q at the boundary z = —¢ can be deduced from this, using (3) and com-
parison with expansion (17) shows that
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—C,,sinh I, ,§ + D,, cosh [, £

_ _ 47 + BB, + h*){go sin a,b sin B,b + ¢i(sin a,a sin B,a — sin a,c sin B,0) b 1)
K,l.a.8.{(a; + h*)a + h}{(8: + k)a + h}
Further, the boundary conditions (8) and (9) applied to Egs. (18) and (20) give
An = Cra ) (22)

K. D, = K,B,, .

Relations (19), (21), and (22) allow the coefficients 4, B, C and D to be expressed in
terms of the known constants, so that within the metal sheet

© ©

T=2 2

r=1 s=1

i 4(e? + 1*)(B3 + 1°) cos a,x cos By
a,8.{(a® + k)a + Rk} {(B® + K)a + h}(K, sinh I, ,£sinh I, + K, cosh [,.& cosh I,,{)

li {qo sin &, b sin B,b + ¢,(sin a,a sin B, — sin a,c sin B,¢)} sinh 1,,¢

(23)
+ K.T, sin «.a sin 8,a cosh l,,E:I cosh I,,z

+ [_Iﬁ {go sin a,b sin B,b + ¢.(sin «,a sin B,a — sin a,¢ sin B,c)} cosh I,,¢

+ K.T, sin a,a sin B,a sinh l,,g] sinh l,,z}

and within the sample

T=-ZX

) 4(a® + B (B2 + B®) cos a,x cos B,y
‘a,B,{(e? + B)a + h}{(8: + h*)a + h}(K, sinh I, £sinh I,,¢ + K, cosh [,.& cosh I,,¢)

{I:ll {qo sin &, b sin B,b + ¢,(sin a,a sin B,a — sin a,c sin B,¢)} sinh [,,¢
- brs (24)

+ K.T, sin a,a sin 8,a cosh Z,,£:| cosh [,z

+ [—li {gosin a,b sin B,b + ¢,(sin a,a sin B,a — sin a,csin B.c)} cosh 1,.¢

+ K, T,sin «,a sin 8,a sinh l,ss] sinh l”z}.

Thus for any point (z, y, 2) in the sample or in the metal plate, the temperature is given by

T = I-t(il?, ?/;Z)Qo + V(x7 Y, Z)QI + )‘(x: Y, Z)To ) (25)

where u(z, y, 2), »(z, ¥, 2,) and \(z, y, 2) are, for any particular guarded hot plate func-
tions of position only. In operating the apparatus, as pointed out earlier, the heat inputs
into the hot plate and the guard plates are controlled to maintain a fixed temperature
difference between the central areas of the hot and cold faces of the sample. For the
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theory, as it is here, central points only are used. The theory may however be modified
for any point or set of points. At the same time the temperature difference between two
points, one on the edge of the guard plate and one on the edge of the hot plate, is main-
tained zero. Applying these conditions to Eq. (25), two equations

T, 4 AT = u(0, 0, 0)go + »(0, 0, 0)g, + A0, 0, 0)T, (26)
and
{u(c, d, 0) — u(b, d, 0)}go + {v(c, d, 0) — »(b, d, 0)}q (27)
+ {\ec,d,0) — \b,d,0)} =0

are obtained and hence it is possible to determine ¢, and ¢, for any T, . Variation of
T, is effectively the same as varying the temperature of the controlled atmosphere
surrounding the apparatus. The measured thermal conductivity of the sample is then
obtained from the heat input/sq. foot of the heater, the dimensions of the apparatus,
the thickness of the sample and the temperature difference across the sample

QObzﬂ'
(KS)meu. = %(b—_*__c—)T—A_iw_' (28)

Unbalance effects. The theory as so far described covers all variations provided the
apparatus is in balance, i.e., no temperature difference between a pair of points on the
outside edge of the hot plate and the inside of the guard plate. In practice a gap fitted
with a poor conductor (in most cases—air) separates the guard plate from the hot plate,
but in the theory above no such gap exists.

To match the theory more closely with the apparatus as it is in practice, it
is necessary when determining unbalance effects to consider the problem in two parts:
(a) the effect of the correct heat flux in the metal plate and (b) the correction for the
effect of the temperature difference across the gap on the sample itself.

(a) Thus, if 7 is the temperature difference across the actual gap (at the pair of
points) and the gap is filled with material of conductivity K’, then the heat flows would
be the same as if the temperature difference between the same two points in the solid
metal plate were

Kl
. [ Aindiy .
T" =T X (29)
For the determination of the measured thermal conductivity in this case 7"/ replaces
the zero in the right hand side of Eq. (27) and this is combined with Eq. (26) to determine
a ¢o . This g, thus takes lateral heat flux in the metal plate into account but must be
corrected for effects in the sample.

(b) In the sample itself the actual temperature difference T” applies. Consider the

sample alone with the boundary conditions (4)-(7) as before, but with

T=0 2= —a<z<a —a<y<a, (30)
T="Tz,uy z2=0 —a<z<a —a<y<a, 31

where T'(z, y) is zero if | | and | y | are both less than (b + ¢) otherwise it is equal to
T’. (T" is positive when guard plate is the hotter.)
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The solution obtained is

T, = i > AT (a2 + B)(B2 + R’) cos a,x cos B,y sinh 1,.(¢ — 2)
m=1 n=1 aan (an + hz)a + h’} {(ﬁm + h2)a + h} Slnh lmng- (32)

X {sin a,a sin B,a — sin $a,(b + ¢) sin 18,.(b + ¢)}.
The total heat entering the sample from the hot plate must therefore be

(b+e)/2 (b+ec)/2 6T )
2 a
o + K. ~/‘—(b+c)/2 /;(b+c)/2 (62 2=0 dz dy (33)
and the measured conductivity will be
— 4¢ 2
(Ka)mea.s - (b _I_ C) AT {b
_ >\« 16K, T lmn(an + hz)(Br: + h2) sin %—a,,(b + c) sin %ﬁm(b + c) (34)
; El a2B2{(a2 + K)a + h}{(B: + K)a + h} coth 1,.¢

X {sin a,a sin B,a — sin e, (b 4 ¢) sin 18,.(b + ¢)}.

The coefficient of edge heat transfer. In a system in which the insulation is in
contact with only one other material a simplification often used is to assume that the
insulation may be replaced by an extremely thin layer of material of almost zero con-
ductivity, i.e., the flow of heat through the insulation is taken to be perpendicular to
the interface between insulation and the material being insulated. In this case the
boundary condition used pertains to this interface and is taken in the form

& -1, (35)

where # is in the direction normal to this interface and T, is the temperature at which
the outside of the insulation is maintained. A reasonable approximation for the co-
efficient of edge heat transfer is then

K;
h = Kd (36)

provided that there is good contact between the two materials, and that the temperature
gradient through the insulation is much greater perpendicular to the interface than
that parallel to the interface. In Eq. (36) K; is the thermal conductivity of the insula-
tion, K is the conductivity of the other material and d is the thickness of the insulating
layer.

In the guarded hot plate the insulating layer is, however, in contact with both the
sample in the apparatus and with the metal of the guard plate. As well as this the temper-
ature gradient parallel to the interface will be comparable with that through the insula-
tion, thus any attempt at defining % as in Eq. (36) could lead to considerable inaccuracy.
Nevertheless it is necessary to obtain a uniform value of & over the entire edge match-
ing as closely as possible the edge heat losses for any particular set up in order that the
equations may be solved. This value of & was determined as follows. The arrangement
was simplified by working in two dimensions only. The sample/hot plate block LM M'L’
(Fig. 4) and the insulation MM'VV’ were considered separately. It was assumed that
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Fi16. 4. The boundary conditions assumed for the determination of the coefficient of edge heat transfer, h.

the block LMM'L’ was edged by a thin layer with coefficient of edge heat transfer
h in place of the layer of insulation and using this the heat flow over any section of the
face MM’ was determined. The temperature at the point N was also determined. The
block of insulation was then considered and it was assumed that the heat flowing over
any section of the face MM’ of this block matched that flowing out over the same section
of the face MM’ of block LM M'L’. The temperature at the point N’ was then determined
and this temperature was equated to the temperature determined for the point N of
the block LMM'L’.

For the block LMRS (Fig. 4) the boundary conditions are (assuming that the co-
efficient of edge heat transfer is h)

at =0 T=T,, 37
at =t K,,,(%) - K(%) , 38)
at x* = §' Tm = Ta ) (39)
at T =¢+¢ Km%=Q, (40)
at y = —a % — kKT =0, 41
at y=a gg+hT= , (42)

where K,, is the conductivity of the metal plate, K, is the conductivity of the sample
and the subscripts m and s refer to the metal and the sample respectively. The heat
input @ is so chosen that if the edge insulation were perfect the temperature difference
across the sample would be 40°F. Similar boundary conditions apply for the
block L'M'RS.

Thus solving Laplace’s equation in the block LMM’'L’ with these boundary con-
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ditions the temperature at any point within the block is given by

©

T = Y {A,cosha,(x — ) + II? B,sinha,(r — )} cosa,y 0<L2<¢

r=1

= 3 (A cosho(w — §) + B, sithay(@ — )} cosay <z <¢+E

r=1

= i {Ar cosh ar(x - + 22) - Br sinh ar(x - ¢ + 25)} Cos o,y (43)
{tE<z< ¢+ 2%

— 3 {4, cosha(e — T F %) — K’”B,sinha,(x T T 2) cosay
%<z <A+,

where
2h(K T cosh a,& + Q sinh a,y)
P — %= . . (44)
{(@ + KDa + h} cos a,a(K, cosh a,{ cosh a,¢ + K, sinh a,{ sinh a,£)
Zh( K,T,sinh o.¢ -I— K.Q cosh a,{)
B, = Ko o (45)

{(e® + h®a + h} cos a,a(K, cosh a,{ cosh a,¢ + K, sinh ,{ sinh a,£)

and by differentiating this with respect to y and multiplying by the applicable value
of the conductivity the heat flow over any section of the boundary MM’ may be obtained

K(x )<ay>v=n = i K., sin a,a{A, cosh o,(x — §) + B sin o, (x — g-)}

r=1

0<z<¢
= Y. K,a,sin a,a{4, cosha,(z — ¢) + B, sinh o,(& — )}
r=1
§ <z ¢+¢ (46)
= > K,a,sina,a{A, cosha,(x — ¢ + 2¢) — B, sinh a,(z — ¢ + 2§)}
r=1
f+E<z< ¢+ 2
= > K,a,sin a,a{A, cosha,(x — ¢ + 233) K. B sinha,(x — ¢ + 25)}
r=1
§+2£va£2(§'+9
while the temperature at N(y = a, z = ¢) is
Ty = Y A, cosa,a. 47
r=1
For the edge insulation MVV’M’ it is assumed that
at y=a-+p T=0 (48)

at =0 } =ZQ(_y+a_|.p) (49)
z=2¢+¢§ P
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while at

y=a K(%) =K@ (Z ay) (50)

y=a

where K(x) (07/8y)y-q is defined above in Eq. (46) and the subscript ¢ pertains to the
insulation.

The temperature assumed along the edges MV and M’V’ of this block, as given in
(49) is from necessity an approximation and will give for any simple arrangement of
insulation a slightly low value of h. If the entire hot plate assembly is covered by the
same thickness of insulation the temperature variation across these faces does not differ
greatly from the linear variation assumed. A relaxation technique was used to determine
this temperature variation in several cases.

Solving Laplace’s equation in the block MVV'M’ under the boundary conditions
(48), (49) and (50) the temperature at any point within the block is found

=%(—y+a+p)

_ Z": = { 4(¢ + Ha, sin a,a
K [n’n® + 4a(¢ + £)7]

n=1 r=1

-[4K,,,a,(§' + £) sin 7—125 (A, sinh o, + B, cosh a,£) + nw(l — cosnr)
(51)

(- ohas — 2l
( K.4, coshoyf + KB, sinhaf — (Kn — KJ)A, cos gm0

. nwx
4t + DT, 2 + 9 } Mk + 9

nrp

sinh {nw(a +p—y)
+HEEOE)

sh — P
2(&‘ +9
and thus the temperature at the point N'(y = a,z = ¢) is

— 4t + E)To nrp nwf
T=T Z s o S + b

1l s 5 4(¢ + $a, sin a,a -
K; 22 {n‘lrlnz'lr2 + 407(F + 9]

n=1 r=1

(52)
| 4K 0. (¢ + £) sm ®T (A, sinh a,t + B, cosa £) + nr(l — cosnw)

( whas = (Ko - o))
( K.A, cosha, + K,.B, sinha,¢ — (K — K,)4, B+ 9
nw

2(§ + H° 20+

As N and N’ are in fact the same point the temperatures as defined by (47) and (52)
should be the same and thus by equating these A may be computed in terms of the
other constants. This equation is however not linear in 4, whereas it is linear in K; hence
it is much more convenient to choose an h and then solve for K, . The variation of K,

X tanh

sin



19611 A THEORY FOR THE SQUARE GUARDED HOT PLATE 217

with h was determined for various discrete values of the dimensions and for various
materials as heater plate and sample. In all cases it was assumed that the apparatus
was 1 foot square, i.e., a = 0.5 foot.

The results of these computations show that provided the thickness of insulation
is greater than the thickness of one sample (p > {), h does not vary with insulation
thickness, neither does it vary significantly with the conductivity of the sample itself
for the range of values considered (b < .04 ft7*, .02 < K, < .10 Btu/ft°Fhr, .01 < K; <
.04 Btu/ft°Fhr K, = 0(10°)K,). It was found that h is approximately proportional
to the conductivity of the insulation K, , inversely proportional to the conductivity
of the metal plate K,, , and for the  used here it is inversely proportional to T, + 40
for the range —35 < T, < 0°F.

The variation of A with £ and ¢ is rather more complicated but is given by

h < ¢, 8), (53)

where ¢(¢, £) is given for various discrete values of ¢, 1/16” < ¢ < 3/8” in Fig. 5. This
may all be combined in the single formula

h — Kﬂ¢(§" E)
Km(TO + 40)

which defines h to within 79, of the computed values.
To justify to some degree the method of determining the value of &, K; has been

(54)

1
" 1

o
ok -
ok

Fi1a. 5. The variation of ¢ (¢, &) with £ for discrete values of §.
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determined by equating the temperatures at several other points at the interface be-
tween the two blocks instead of at N and N’. The values obtained have been compared
with those obtained above and it was found that for all the values of K, likely to be met
in practice, i.e., 0.01 < K; < 0.04, Btu/ft°F/hr. the variation of h across the edge of the
sample or of the metal plate for a particular K; is less than 6%, of the value determined
above. As in the simplified heating system used in this section (no guard heater) a vari-
ation of h by 109, merely alters the temperature difference across the centre of the
sample from hot to cold plate by less than 0.39, it is to be expected that in the calcula-
tions for the full apparatus a variation of & of the order of 109, will have a negligible
effect and hence there is little justification for any attempt to determine k& to a higher
degree of accuracy.

Conclusions. The theory developed above thus effectively matches most aspects of
the guarded hot plate and its operation. It is possible to allow for the variation of any
of the following

(a) The outer dimensions of the guard plate.

(b) The inner dimensions of the guard plate heater.

(¢) The outer dimensions of the hot plate heater.

(d) The thickness of the metal plate.

(e) The material of the metal plate.

(f) The thickness of the sample.

(g) The material of the sample.

(h) The insulation around the apparatus.

(i) The temperature difference between hot and cold plates.

(j) The temperature of the cold plate (this effectively alters the temperature of
the surroundings).

(k) The positions of the thermocouples controlling balance.

(1) The amount of unbalance.

(m) The gap width and the material with which the gap is filled.

This theory was not intended to be used in the direct measurement of thermal con-
ductivity, but rather as a full check of the accuracy of the application of the simple
linear flow formula under all conditions. The results will be used in the designing of an
apparatus in which the total error will be minimised.

The double series (24) is rather slowly coverging and preliminary computations
showed that although 100 terms were sufficient to give the temperature to 4 decimal
places, insufficient accuracy was obtained to permit g, and ¢, to be computed with
any certainty.

It is intended to obtain a full solution for a 1 foot square guarded hot plate on a
digital computer, but at the present time access to one is being awaited. Once a full
solution has been obtained for an apparatus of one size, the solution will be equally
applicable to guarded hot plates of other sizes by scaling the results.
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