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ON THE THEORY OF PLANE STRESS*
By

EDWARD L. REISS AND STANLEY LOCKE**
Institute of Mathematical Sciences, New York University, and Republic Aviation

1. Introduction. The classical theory of plane stress [1] is concerned with a thin
elastic plate subjected to edge forces which deform it so that there is no normal dis-
placement of its middle plane. This theory is conventionally obtained from the exact
three dimensional linear theory of elasticity for homogeneous and isotropic materials,1
by neglecting some of the compatibility equations and assuming that the shear and
normal stresses, transverse to the middle plane of the plate, vanish and the remaining
stresses are independent of z, the coordinate normal to this mid-plane. These assump-
tions imply that only two boundary conditions, which are functions of one variable,
are required along the edge. This is in contrast to the three of the exact theory which
are functions of two variables. Therefore, a solution of the plane stress theory is not,
in general, a solution of the exact theory.2 The plane stress solutions can provide accu-
rate approximations if the plate thickness is "small" compared to each of its lateral
dimensions.

In this paper, we indicate the relationship between the two theories3 by systemati-
cally deriving from the exact theory the differential equations and boundary conditions
of plane stress. Our technique of derivation also provides a systematic method of ob-
taining increasingly accurate approximations to the exact stress distribution. This
technique was previously developed and applied to other related elasticity problems
[3, 4, 5]. In a sense, it is a generalization of the boundary layer method used by
Friedrichs [6] and later by Friedrichs and Dressier [7] in a study of the bending of plates.
In the latter reference, it is also shown that by decomposing each stress component
and edge force into the sum of an even and an odd function of z, the exact theory for
the general problem of the loaded plate separates into two distinct systems of differ-
ential equations and boundary conditions. One system describes the "bending" of
plates and is partially treated in [3], [6] and [7]. The second system, which is concerned
with the "extension" of plates, is considered in this paper. Hereafter, each stress com-
ponent and edge force is assumed to possess its specific even or odd property. These
are listed at the end of Sec. 2.

Briefly, our method is to expand each stress component in a power series in the
plate thickness, h. Substituting these expansions into the exact theory and equating
coefficients of like powers of h yields a sequence of systems of differential equations to
determine the expansion coefficients. The equations of the lowest order approximation
(the "zeroth order interior problem") coincide with those of the plane stress theory.
Higher order systems provide "corrections" to the plane stress approximation. In
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hereafter referred to as the exact theory.
2There are special cases for which the plane stress solution is a solution of the exact theory, e.g. [2],
3In this connection see [9] and the discussion in [1].
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general, the expansions cannot satisfy the boundary conditions of the exact theory
along the edge, nor do they represent the stresses in a region adjacent to the edge.4
To determine, from the exact theory, appropriate boundary conditions for the previously
mentioned differential equations and to obtain approximations for the stresses near
the edge, we employ a second expansion in h, whose coefficients are now functions of
new independent variables. These new variables are obtained by "stretching" the co-
ordinate normal to the edge of the plate.6 Substituting these expansions into the exact
theory and equating coefficients of like powers of h results in a sequence of boundary
value problems, whose solutions yield approximations to the stress distribution near
the edge. The requirement of existence of single valued solutions of these problems
provides the desired boundary conditions. The boundary conditions obtained from the
lowest order approximation coincide with those of the plane stress theory.

In Sec. 6, the procedure for obtaining the higher order approximations for the three-
dimensional stress distribution is summarized.

2. Formulation. An elastic plate of thickness 2h is considered as a three-dimensional
elastic body bounded by the planes z = ± h and the cylindrical surface x = X(s),
y = F(s). The bounding planes z = h and z = —h are referred to as the faces of the
plate. The surface, | z | < h, x = X(s), y = F(s), is called the edge, and the "smooth"
curve B : z = 0, x = X(s),y = F(s), is called the boundary curve.

Tor simplicity, it is assumed that the faces are force free6 and that the edge is sub-
jected to an arbitrary equilibrium distribution of normal and shear forces. We further
assume that the magnitudes of the edge forces are sufficiently small to insure that the
exact theory remains valid.

If we introduce the dimensionless variable

then the faces are given by f = ±1. If the stresses are functions of x, y and f the equa-
tions of the exact theory are [1]

Equilibrium equations,

&2X,{ I fo\.&X,X ~f~ "I- I ,x "I- & v , J/] 0, (2)

^*z,£ ~"f"~ fo[Vzx,x I 0"zy,yj " Qj

Compatibility equations,

Cz.rr + h2[A<rx + = 0, + h2[A<r„ + = 0,

o'z.rr + ^.rr + Ac, = 0, <?zx,tf + h~ A<rIX — 0, (3)

o'zv.rr + + li Aczv = 0, "xv.n + h2[A<rxy + fiiX„] = 0.

Here we have employed the notation,

^2 ^2 j

A"d? + W2' n = rr^ (^x + + <r-)'

4See Sees. 3 and 4.
s See Sec. 4.
6This restriction is not essential, but merely condenses the calculations.
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and an independent variable appearing as a subscript and following a comma indicates
partial differentiation with respect to that variable, e.g., <r2X ,r = dcrzx/d£.

To complete the formulation we require appropriate boundary conditions. These
are obtained by specifying the applied forces as

<r,(x, y, ± 1; h) = <rtx{x, y, ± 1; h) = <r!y{x, y, ± 1; h) = 0; (4a)

an(X, Y, f; h) = L(s, r, h), <Tns{X, Y, f; h) = Q(s, f; h), ^
<rn„(X, Y, f; h) = R(s, f; h).

In (4b), n signifies the outward normal to B and s the distance along B. L, Q and R
are the prescribed normal and shear edge loads. Since Eqs. (2-4) are the stress formulation
of the elastic problem for the plate, no explicit reference to Hooke's law is required.

In this paper attention is focused on the "extension" of the plate by the edge forces.
This implies [7] that L, Q, <rx , tr„ , a, , and axy are even functions of f, while R, <rzx and
<riy are odd functions of £. In the ensuing analysis we shall make frequent use of the even
or odd property of each of these quantities without explicit reference.

3. The interior problems. We assume that each stress component symbolized by,
c(x, y, h), can be represented, in an asymptotic sense, by a power series in h

<r(x, y, f; h) ~ X y> (5)
i=0

Furthermore we define a' = 0 if i < 0. The functions cr'(x, y, f) are called the interior
stress coefficients and are assumed to possess the same even or odd property as
c(£> V, f; h). We also assume that the prescribed edge forces in (4) can be expanded in
power series in h:

L(s, f; h)
Q(st f j h)
R(s, f; h)

= E
'l\s, r)
Q'(S, f)
a"(s, r).

h\ (6)

Substituting Eqs. (5) into the differential equations (2) and (3) and boundary con-
ditions (4a) and equating coefficients of the same powers of h yields, from the coeffici-
ents of h",

n | n— 1 I n— 1 /-v n i n—1 i n—1   rv
&zx,£ ~T~ Gx ,x ~T~ &xv,v ^zv,X ~T~ ^xy,x ~T~ &v,v ^ J

+ azX,\ + cJl.i = 0;

<rf + Ac"-2 + a?-2 = 0, „ + Act;-2 + o?-2 = o,

f".rr + ^"rr + Ac" 2 = 0,

<r"z,n + + Au^2 = 0, + Ao-"„2 = 0,

"■"i/.rr + Ac"„2 + Q,"xy = 0;

o-«(a:, y, ± 1) = <r"„(a;, y, ± 1) = <t"Xx, y, ± 1) = 0. (9)

We now proceed to systematically analyze (7-9). Since a = 0 if i < 0, it follows
from (7) and (9) that,

s 0. (10)

(7a, b, c)

(8a, b, c)

(8d, e, f)

0 0 0
Vzx &zv
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(11)

An immediate consequence of (8a, b, f) and (10) is that,

°x = S"(x, y), a" = Snu(x, y), <r"„ = S"„(z, y),

(1 + v)Q"(x, y) = Snx(x, y) + Sny(x, y), if n = 0, 1.

Equations (7a, b), (9) and (11) then imply that,

<r]z = = 0. (12)

We can, in fact, prove7 that,

<r"x = <r"v = «•" = 0, 0" = fin(z, y) - v (CT" + o\), n = 0, 1, • • • . (13)

Hence (7c) and (8c, d, e) are identically satisfied by (13) for all n and (7a, b) become,

<r",x + o""v,v = a"v.x + <rl,v = 0, n = 0, 1, • • • . (14a)

Furthermore if c" and <rny satisfy (8a, b) then using (13), we see that,

AO" = 0, n = 0, 1, ••• . (14b)

Integration of (8a, b, f) with respect to f yields

<r"(x, y, f) = S"x(x, y) - y - J J Aan~\x, y, p) dp d?,

<Akx, V, t) = Sy(x, y) - y fi"~2 - J J A<rn~\x, y, P) dp d£', (15)
o-"y(x, y, f) = S"u(x, y) + | fun~y , n = 0,1, ■■■ ,

and (13) as solutions of (7-9) provided that Snx , iS™ and Snxy satisfy the following differ-
ential equations obtained from (14):

s:,x + s:u,u = [n?-2 - + f f a*::?dpdv,

s:„.x + s:,v = £ ^ [fi?-2 - ^:«2] + f f a*;-2 dp dc, (16)
AG" = A(s; + SI) = 0, n = 0,1, ■■■ .

In particular, we observe that (15) reduces to (11) for n = 0, 1 and (16) reduces to

s:,x + snxv.v = s:„x + s;,v = a(s: + s;) = o, if » = 0,1. (17)

Equations (10), (11) and (17) give the equations of the classical theory of plane stress
[1], It is convenient to refer to (17) with n = 0 and n = 1 as the differential equations
of the zeroth and first order interior problems respectively. By recursive application
of (15) and (16) we obtain all higher order interior problems. For example, if n = 2, 3

= s:(x, y) - mas:-2 + v:?]?,
= s:(x, y) - ![Asr2 + a?„2]r2,
= Sxy(x, y) + - £ln.XyZ2;

'See Appendix.
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s:.t + s:„., = snxu,x + s:,u = + sd = o.
4. Formulation of the boundary layer problem. In the previous section Ave obtained,

for all n, explicit differential equations, (16), and expressions for the interior stress
coefficients (13) and (15). These results were derived from the exact theory independent
of the boundary conditions along the edge, (4b). For each n, the differential equations
form a "fourth" order system and hence require two boundary conditions on B, which
are functions of only s. The exact theory requires three conditions, (4b), that are func-
tions of s and f. Furthermore we observe that the interior stress coefficients have a
specific dependence on f, (13) and (15), while the prescribed stresses in (4b) are arbitrary
functions. Therefore the interior expansions (5) cannot, in general, satisfy the edge
boundary conditions. In fact, if the series (5) represent the solution they do so in some
region away from the edge, i.e. in the "interior" of the plate. Near the edge, i.e. in the
"boundary layer," the solutions vary rapidly from those of the interior solution to
satisfy the boundary conditions of the exact theory. To obtain an expansion that uni-
formly represents the solution up to and including the edge we employ a "stretching"
of the independent variables. Our procedure, which has previously been employed in
studying other related problems [3, 4, 5], differs somewhat from that of Friedrichs [6, 7].
We assume that the rapid variations that occur in the boundary layer depend only on
the direction normal to the edge. Therefore, only the independent variable in this di-
rection is stretched.8

To facilitate this, consider any point P on B and assume, without loss of generality,
that the x and y axes coincide, respectively, with the normal and tangent to B at P.
We define at P the boundary layer coordinates f, y, f by "stretching" the variable x
so that,

« = f * <18>
Then for sufficiently small h, any fixed neighborhood of the edge, no matter how small,
in the x variable corresponds to an arbitrarily large one in the £ variable. Roughly this
implies that the boundary layer effects penetrate from the edge into the plate a "dis-
tance" of order of magnitude h.

If /(£> U< fJ h) = °~(z, V, f; h) is the generic symbol for the stresses as functions of
£. V, f» we assume that

n,y, f,h)~ ifQi.y.fih'. (19)
t = 0

Here f are called the boundary layer stress coefficients and we define /* = 0 if i < 0.
Introducing the transformation (18) and the expansions (6) and (19) into the exact

theory (2-4) and equating coefficients of like powers of h, we find that the coefficients
of hn yield

Tzx.t + /".£ = —fxv\ , /".r + f.x.i = —f"v*v , Fzv.t + /"».£ = ~Tv'v ; (20a, b, c)

v2/: + r££ = -r~i, v2/: = -n:,\ - r;„2, v2/: + rn = -r~i (21a, b, C)
V2in _L "Pn _   rn—2 X72~fn    -p»-l   rn—2

J ZX "T~ A ,££ Jzx.vv J V J Zy 1 JzV.VV )

V2 tn   -pn—1 rn—2 #
Jxy J- ,£1/ Jxv.yy J

(21d, e, /)

8For more detailed descriptions of these methods see [3-8].
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£,(*, y, ± 1) = m, y, ± 1) = £,(*, 2/, ± 1) = 0; (22a)
/:(o, o, f) = Ln(o, r), /L(0, o, r) = /no, r), fuo, o, r) = <m r), (22b)

where,

V2/ = ^|2 + and, r"(£, y, f) = j v (/" + /J + /").

Equations (20-22) are written for y = 0, i.e. in the normal plane to B at P.
To complete the formulation of the boundary layer problem we require that each

/ approaches or "matches" the corresponding interior stress as h —> 0, or equivalently
from (18) as £ —> — «>. More precisely, the matching conditions, or the asymptotic
forms of the boundary layer stress coefficients are obtained [3, 4, 5] by assuming that
each interior stress coefficient, <r'(x, 0, f), possesses a Taylor series expansion about x = 0

Ax, o, f) = E A;oy, (23)
J-0

where,

[l_ d'o-'(0, 0, f) .. .
A'(f) = |j! dx' ' l-U (24a)

0, if i < 0.
It follows from (5), (18), (23) and (24a) that in the neighborhood of x = 0,

a(x, 0, f,h)~Z D"(Z, 0, fit?, (25)
n = 0

where

m, o, r) = E ArXM (24b)
J-0

are the interior stress coefficients near x = y = 0 as functions of (f, f). If we define the
"reduced boundary layer stress coefficients" F"(£, 0, f) as,

0, r) = f(£, o, f) - £>"(£, 0, f), n = 0, 1, • • • , (26a)
then employing (19), (25) and the definitions of /(£, 0, f; h) and <r(x, 0, f; h) the asymp-
totic form for the /" is obtained by identifying each f with the corresponding Dn near
x = 0 as h ■—> 0. We write this condition, using (18) and (26a), as:

lim F"fc, 0, f) = 0. (26b)
f—o

In obtaining (26) we assume that the terms in fn which vanish as £ —> — °° do so faster
than any negative power of £.

The boundary layer problem, (20-22), (24) and (26), is systematically analyzed
in the next section.

5. Analysis of the boundary layer. For each n, the boundary layer problem separates
into two distinct systems which are called Problem Pn and Problem Tn. Problem Pn
involves only the coefficients /" ,f" ,/", and/"* and consists of Eqs. (20a,b), (21a, b, c, d),



1961] ON THE THEORY OF PLANE STRESS 201

the first two of (22a, b) and (24) and (26) for these coefficients. Problem T" is concerned
with the two remaining coefficients and consists of (20c), (21e, f), the last of (22a, b)
and (24) and (26) for these coefficients.

We shall associate with the Fn of Problem P" a function <£"(£, 0, f) which may be
the solution of the following boundary value problem on the semi-infinite strip D,
I r I < i, t < o

VV = 0;
o, ± 1) = &"(£), <#>?{!■(£) 0, ± 1) = 0; lim , <£"fr] = 0; (27)

{-♦-co

<t>:<r(o, o, r) = «"(o, r), *:„(o, o, r) = no, t),
where a" and /3" are respectively even and odd functions of f and / o &"(£) d£ = 0. It can
be shown by an elementary calculation that if <t>"S!, and are uniformly continuous
functions of f and if 4>", <£"{ and <£"f are single valued functions, then,

£ «"(0, f) df = 0. (28)

Using (11), (13) and (17) we can show that

Fl = 4>°.n , Ft = <»?££ , = -*?K , F°y = vVY (29a)
is a solution of Problem P° if 0° is a solution of (27) with,

k\Q = 0, a°(0, f) = L°(0, f) - <S°(0, 0), /3°(0, D = -R°(0, 0). (29b)
Application of (28) to (29b) gives the first boundary condition at y — 0 for the zeroth
order interior problem as,

&°(0, 0) = | £ L°(0, r) df. (30a)

Similarly, by employing (11), (13) and (17) Problem T° has the solution,

Fl = v^r , K = (31a)
if is a solution of the following boundary value problem on D

W° = 0;
*?r(£, 0, ± 1) = 0; lim , \t°r} = 0; (31b)

{-♦-co

^?t(0, 0, f) = Q°(0, f) - &°„(0, 0).
Existence of a solution of (31b) requires that the integral around the boundary of the
normal derivative of \p° vanishes. This yields the second and final boundary condition
for the zeroth order interior problem at y = 0 as,

0>,0) = | £ Q°(0, f) dr. (30b)

The solution to Problem P1 can be reduced to solving (27) with

fc1® = *?,(*, 0, + 1), a'tO.f) = L\0,t) ~ £(0,0) + *:„(0,0,f), (32a)
p\o, n = -r\0, r)
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and

Fl = , F) = , F\x = -<t>\e , (g2b)
F\ = pVV + 2\p°v .

From (28) and the second of (32a) we find the first boundary condition at y = 0 for
the first order interior problem as,

s](0, o) = | £ [L\0, r) + *?.«), 0, r)] df. (33a)

If we set

Fly — — v<t>°tv , F]y = — v<t>°,lu , (34a)

then (34a) is a solution of Problem T1 if £*(£, 0, f) is a solution of the following boundary-
value problem on D:

V'S1 = (1 - v) J VW.tv dt.

0, ± 1) = 0, lim {S!i , SM = 0, (34b)

s!r(o, o, r) = -QXo, f) + suo, o) +„ £ C(o, f) dr.
It can be shown by an elementary calculation that if is a uniformly continuous
function of f and if S is a single valued function then,

£*(0, 0) = | f [Q\0, f) + ,f22?„(0, f)] df. (33b)

This is the second and final boundary condition for the first order interior problem.
Higher order boundary layer approximations may be obtained by proceeding in a
similar manner.

From Problems P" and T" given above we observe that, in general, Ft , Fzx and Fiy
do not vanish, while in the Appendix it is shown that the corresponding interior stresses,
<rz , azx and rrz!l do vanish. Thus there is a contribution to the transverse normal and
shear stresses only in the boundary layer and we would therefore expect the plane
stress theory, i.e. the zeroth order interior problem, to yield a "good" approximation
to the exact solution in the interior. This has been verified for the problem of an infinite
plate with a circular hole stretched by a uniaxial force at infinity. The three-dimensional
corrections to the plane stress theory yield only "small" changes in the stress concen-
tration factor. These results will be reported in detail elsewhere.

6. Summary. In the preceding sections we have shown, using systematic expansion
procedures, the relation of the plane stress theory to the exact theory. The plane stress
theory appears as the zeroth order interior problem, (11), (13) and (17) with n = 0
and (30), the solutions of which supply a first approximation to the three-dimensional
stress distribution. If we introduce an Airy stress function, G°(x, y), such that,

CfO   /^0 nO   /~i0 qtO    
Ox W.yy f O y \J fXX f &XV ^ ,XV )

then the zeroth order interior problem can be written in the familiar form
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A 2G° = 0;
and

S°x = G?„ = 1L° df, = -<&, = | Q° df, on B.
In addition, the expansion procedure provides "three-dimensional corrections" to

the plane stress theory. The first correction is in the boundary layer and is obtained
from the solutions of P° and T°. The next correction is obtained from the solutions of
the first order interior problem, (11), (13) and (17) with n = 1 and (33), and Problems
P1 and T1. We notice from (32) and (34) that the solutions of the zeroth order problems
provide inhomogeneous terms for the first order problems. We define an iVth approxi-
mation to the exact theory by introducing a(N)(x, y, f; h) as the generic symbol for the
stress components of this approximation where,

y, r; h) = f) [<r"(x, y, f) + F"(x/h, y, f)]h".
n=0

Here an(x, y, f) and F"{x/h, y, f) are, respectively, the interior and reduced boundary
layer stress coefficients of order n obtained from the solutions of the nth order interior
and boundary layer problems respectively.
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Appendix

Recalling that a" and O" are even functions of £ and that a"x and a"u are odd func-
tions of f, we prove the Theorem. <r"x = <r"„ = <r" = 0 and O" = fl"(x, y) for all n.
The proof is by induction. Let anzx = <rnzv = <t" = a"*1 = o-"*1 = 0, and 0" = y)
and 0"+1 = Q,n+\x, y). Then from (7c) and (9) we immediately conclude that
<t"+1 = <7™+2 = 0 and hence from (8c), 0n+2 = ttn+2(x, y). It follows from (8d, e) and (9)
and the inductive assumption that, a"*2 = a"*2 = 0. The induction is completed by
reference to Eqs. (10-12). Thus,

CO CO CO

<rix ~ a'!Xh' = 0, cIV ~ a\yK =0, IX, ~ = 0.
t-0 »" — 0 »—0


