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BY

BRUNO A. BOLEY
Columbia University

Summary. Criteria are derived for the determination of the magnitude and the
location of discontinuities of solutions in the form of definite integrals obtained by
means of integral-transform techniques. The types of integrals arising with the Fourier
sine or cosine transforms and those arising with the Laplace transforms are considered
in detail. Applications of the theory arise particularly with problems of wave propaga-
tion, where interest is centered on the location of wave fronts and the magnitude of
jumps there; two illustrative examples of such problems relating to Timoshenko beams
are included.

Introduction. In physical problems involving wave propagation phenomena, atten-
tion is frequently centered upon the speed of propagation of discontinuities, and on the
magnitude of these discontinuities as they progress through the medium. Such informa-
tion is usually obtained by examining the solution of the particular problem under
consideration by ad hoc methods, and it would therefore be desirable to have available
some general criteria for the detection of the location and magnitude of these discon-
tinuities. The establishment of such criteria is the purpose of this paper, which considers
the forms of solutions arising when some types of integral transform techniques are
employed. The criteria developed permit the direct determination of the wave-front
location and of the local behavior there, from an inspection of the solution in the trans-
form domain, without requiring a detailed inversion.

The developments which follow are divided into four parts: the first contains some
preliminary concepts required in the subsequent analyses, the second and third deal
with the Fourier sine and cosine and with the Laplace transforms respectively, and
the fourth discusses the applications to wave propagation problems.

This work is part of a project sponsored by the Office of Naval Research.
1. Preliminary theorems and definitions. For purposes of future reference, it will

be convenient to recall first the following two theorems:
I. A sufficient condition1 for the validity of the equation

f f(p, x0 + 0) dp = lim f f(p, x) dp (1)
v a z—*x o J a

*Received August 16, 1960; revised manuscript received December 27, 1960.
'See, for example, Hobson [1], vol. II, p. 323. This theorem (as indeed many of the present develop-

ments) may be extended to integrals defined in the Lebesgue sense; because of the physical nature
of the problems considered here, the discussion in this paper is restricted to Riemann integrals.
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provided that j(p, x) be integrable in the interval (a, b), for some interval x0<x<x0+a,
and that f(p, xa + 0) exist, is that a function <p(p) > 0 exist, integrable in (a, b), such that

I 1iv>x) I ^ <p(p) in a <p < b, x0 < x < x0 + a. (la)

Similarly,

[ f(p, 00) dp = lim f f(p, x) dp (2)
J a x—»<» J a

provided that f(p, x) be integrable in (a, b) for x > a and that f(p, °°) exist, if a function
<f(p) > 0 exists, integrable in (a, b), such that

I 1(P>X) I ^ <p(p) in o, < p < b, x > a. (2a)

II. A sufficient condition2 for f(x) to be absolutely integrable in (a, °°) is that j(x)
be integrable in all finite intervals (a, b) and that

lim xnj(x) = 0 for n > 1. (3)
X—»oo

We will denote the discontinuity of a function /(a;) at a point x0 as 3S(a;o), and define it as

S/(x0) = j(x o + 0) — /(x0 — 0) (4)

it being assumed that both f(x0 + 0) and f(x„ — 0) exist. Clearly if S j(x0) = 0 the func-
tion fix), with f(xo) suitably defined, is continuous at x = x0 .

2. Fourier sine and cosine transforms. Given an integral of the form

F{x) = [ Kp) rS^ g(p, X) dp, (5)
J o l/Uo

where it is assumed that (a) | /(p) | is integrable in every finite interval 0 < a < p < b,
and the (b) a number pa > 0 can be found such that, for 0 < p < p0 ,

I f(p) ̂  g(p, x) | < <p(p),

a positive integrable function; it is now desired to find the value of SF(x) for all x in
(_ c0) _|_ 00).

We note first, for future convenience, the magnitude of the discontinuities in the
following simple special cases of (5). For a > 0 and n > 0,

fJ a

sm px .—dp \

= 0 for x 9^ 0

0 if n > 1

X if n = 1

oo if n < 1

for x = 0 (6)

2See Hobson [1], vol. I, p. 505, where conditions less stringent than (3) are also given. For instance,
if, for n > 1, lim*-*;,, [x(log x)n f(x)] — 0, the theorem still holds, and it will be readily noticed that
Theorems IV and V can be similarly generalized without difficulty, though these generalizations will not
be carried out explicitly here.

3The symbol S stands for saltus, though the usual definition of saltus is somewhat different from
that given here; see [1], vol. I, p. 301. See also footnote 14 of the present paper.
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and4

§roo^dp = o (7)
J a y

for all x.
III. It will be useful to note that, for any positive number a, the integral

f Kp) g(v, *) dp
J o OUb

is a continuous function of x. Write in fact this integral, for any a, as

[ Kp) S(P, x) dp + f f(p) g(p, x) dp; 0 < pt < p0
J o tUb Jvx

where the first integral is continuous by property (b) and I, and the second by property
(a) and I.

IV. F(x) defined in Eq. (5) is a continuous function of x, for all x, if

lim pmf(p) = 0 for m > 1. (8)
p-> oo

Note in fact that, with a > 0,

F(x) = f f(p) g(p, x) dp + f f(p) g(p, x) dp, (9)
JO LUo J a LUb

where the first integral has already been seen to represent a continuous function and the
second integral is continuous by virtue of Theorem I and since

kp) o(p, x) < I Kp) I,
the function f(p) being absolutely integrable by Theorem II.

V. If there exist two numbers n > 0 and m > 1, such that, for some constant K,

limp-f/Cp) -^1=0 (10)
p-»oo L P J

then, with a > 0,

&F(x) = KS f° ±-nS™g(p,x)dp. (11)
J a P L/Ub

This may be seen by writing

m -1 m ™ #<p,») dp + [ [/(p) -™p- J cos

+kL v-Z s(p'r) d"
(12)

and by then noting that the second of the integrals on the right-hand side, is, by Theorem
IV, a continuous function of x. In the special case of K = 0, this case of course reduces
to that of Eq. (8).

4Even though the integral itself in unbounded for x = 0, n < 1.
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VI. The discontinuities in the last integral of Eq. (12) must be studied next, and
it will now be shown that

o* 8'n g(p> x) dp = 0 if n > 1 (13)
cos

and that

\ shVp, x) dP = s r\s'm<
P COS y Ja V

provided that a function !~(x) exists for which

lim pr[g(p, x) — p£(a:)] = 0 for some r > 1 — n. (14a)

s/„ p»Z9(p'x)dp = sL f-Z^x)]dp * °<w^1 (i4)

It may be recalled that the right-hand side of (14) is given expicitly in Eqs. (6) and (7).
The validity of (13) is evident from Theorem I, since (1 /p") is integrable in (a, <»).
For the second case we proceed as follows

£ ^ [sin g(p, x) - sin p£\ dp = 2 £ ^ sin ^P' ^cos j^' ^ ^ j dp.

A number a > 0 can be found, however, such that

| g{p, x) - p£{x) | < p for p > a.

Therefore, for p sufficiently large,

1 „in fff(P, x) - yf\ I < I g(p, x) - pi. | _6_p"Sm L 2 J | S 2pn < 2pn+r

and since by hypothesis n + r > 1, use of Theorem I completes the proof. Analogous
developments hold when the integrand contains the cosine rather than the sine.

VII. The results obtained thus far lead to the following corollaries.
If the functions f(p) and g(p, x) satisfy, in addition to the conditions previously

given in conjunction with Eq. (5), also relations (10) and (14a), then5

S f f(p) sin g(p, x) dp .
Jo

= 0 for %(x) 0

0 if n > 1

Kt if n = 1
oo if n < 1

for £(#) = 0 (15a)

and

§ [ 1(p) cos g(p, x) dp — 0. (15b)
Jo

Furthermore, condition (10) is satisfied if the function /(p) admits for large p of a
representation of the form

'Note that, as in the discussion of footnote 14, the functions on the lefthand side of Eqs. (15) are
here regarded as functions of £, and that what is really calculated by these equations is the quantity
[F(« + 0)-F(( - 0)].
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/(P)=f [l+o(i)]- (16a)

Similarly, condition (14a) is satisfied if, for large p,

g(p, x) - p£(x) = ^ + (16b)

for the case in which 0 < n < 1, where Ky is a constant.
VIII. Calculation of derivatives. Closely allied6 to the foregoing results is the question

of the validity of the relation

[_£]*.«*• ™

The validity of (17) rests on the permissibility of the interchange of the integration
and of the limiting process involved in the derivative. Since such an interchange is
essentially that considered in Theorem I, it is clear that Eq. (17) will hold whenever

./> *£* [_»]*. ,,*-0. (18,

In physical applications it will often occur that Eq. (18) holds everywhere except at a
number of isolated points xx, x2, • • • . At any one of these points, say a:,-, we may calcu-
late dF/dx (Xi + 0) and dF/dx (x{ — 0) from (17) and hence also S dF/dx (a:,). It follows
that (17) may be used not only for the calculation of derivatives at any point where
(18) holds [and where therefore S dF/dx = 0], but also for the calculation of derivative
discontinuities at any isolated point where (18) does not hold. This result can be ex-
tended to derivatives of orders higher than the first, provided that the integrals in
question exist;7 thus

8 tg(p- *>] *• (19)

The integral on the right-hand side may expanded by performing the indicated differ-
entiations in the integrand, and it will then appear, in a general case, as the sum of
(n + 1) integrals of the form (5); the discontinuities in each of these integrals can be
evaluated by the preceding rules.

3. Laplace transforms. When the solution of a particular problem is given in terms
of the Laplace transformation, then its discontinuities may be studied either by calcu-
lation of the inversion integral along a suitable path,8 or by a reduction to integrals
of the form of that Eq. (5), to which the preceding theory can then be applied. The
latter course is followed here.

The Laplace inversion integral is of the form

F(x) = [+_2 1(j>)e°("x) dp, (20)

6See [1], vol. II,. p. 355.
'The theorem may be used in cases in which the integrals do not exist, by the procedure described

in the last illustrative example at the end of this paper.
8The effective tool in this process is Jordan's lemma; see for example reference [2],
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where c is a constant chosen so that all the singularities of the integrand occur to the
left of the line p = c + iy in the complex plane. The integrand may be decomposed into
its real and imaginary parts: on the line

p = c + iy (21a)

and with notation

fip) = fn(y') + ifiiy); o(p, x) = gB(y, x) + igiiy, x) (21b)

the result is

i rF(x) = ^ J exp [gB{y, x)][fR(y) cos gt(y, x) - j,{y) sin g,(y, x)] dy

i> r+ 2T J exp ]i9r("V> sin Oiiy, X) + fi(y) cos g,{y, x)\ dy.
(22)

It is now clear that the real and imaginary parts each consist of two integrals of the form
(5), which can therefore be studied by the techniques used in Part 2 of the present work.
Usually however, the imaginary part will be found to vanish (as normally it is expected
to do in a physical problem) by reasons of symmetry, while the integrand in the real
part is usually, and for the same reasons, an even function of y [3]. Only this case need
therefore be considered; for it we then have9

1 r°°F{x) = - exp [gR(y, x)]\jR{y) cos g,iy, x) - fAy) sin g,iy, »)] dy. (23)
7T JO

The following theorem will now be proved.
IX. If equations of the form of (10) and (14a) are satisfied, that is if

lim pm\ Hp) - -n = 0, n > 0, m > 1 (24a)
v—>c° L V J

and if

lim pr[gip, x) — p£(x)] = 0, r > I — n, 0 < n < 1
(24b)

lim [gip, x) - pf(z)] =0, n > 1

9It may be of interest to comment here on the usual procedure of obtaining solutions by means
of the Laplace transform technique. Usually the integral in (20) is first evaluated by means of a contour
integration along a suitable path, and (though in some simple problems an answer in closed form is
thus obtained) in most cases this results in several real definite integrals—usually improper—to be
evaluated numerically. It is generally felt that the procedure just outlined is preferable to the direct
numerical evaluation of (23), because the integrals arising after the contour integration are supposed
to be in a form better suited for computation. This may not be the case, however, if the discontinuities
of F{x) are first eliminated from the right-hand side of (23), as was done for example in [4], Furthermore,
since the principal drawback of the Laplace transform method is the difficulty of inversion, it would
seem that the above alternative procedure should be given serious consideration. For similar reasons,
it goes without saying that use of the Fourier sine and cosine transforms, whenever thay are applicable,
is preferable to use of the Laplace transform.

10Note that conditions (a) and (b) following Eq. (5) hold here because the integrands in question
are analytic on the line p = c + W-
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then11

S F(x).

= 0 for £ 7^ 0

0 if n > 1

K if n = 1
co if n < 1

for £ = 0, (25)

where F(x) is given by Eq. (23).
To prove this, note first that (24a) implies that

and (24b) implies that

lim [/,(») - - 0

lim yr[gn(y, x) - c&x)] = 0,
J/—»co

lim yr[g,(y, x) - yfa)] = 0,

(26a)

(26b)

where

6 = aretan -• (27)c

To derive (26a), the real and imaginary parts of the left-hand side of (24a) are separated,
with the result (since lim„-,„ 0 = ir/2):

A cos (mir/2) — B sin (mir/2) = 0,

A sin (mir/2) + B cos (mir/2) = 0,

where

K cos nd

(28a)

.4 - Ita {(c- + + y^j,

B = lim {(c2 + yT/2\h(y) + Ksmn9
X/—>co \ L

(28b)

(c2 + y)"

Therefore A = B = 0, and with

(28c)
v-*co y

Eqs. (26a) follow directly. The derivation of (26b) from (24b) is entirely analogous to
the one just given, and will therefore be omitted.

"As noted in footnote 5, the left-hand side of (25) might more precisely be written as

SF[f(x)] = F(£ + 0) - F({ - 0).
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The proof of Theorem IX now proceeds as follows12. Rewrite (23) as (with a > 0)

1 r"
F(x) = - / exp (gR)(fR cos g, - jT sin gr) dy

T Jo

+
1 f" / nTj K cos nd ~|
- J exp (gR)\JR - ^2 + yyn\ cos 9i dy,

If" / \Tj , ■K' sin ~| . ,
- - J exp (gR)\Ji + (c2 + yy*\ sin g' dy

K f" exp (gB) cos (gr - nd)
+ rJ. (c2 + yY2 dy-

(29a)

The first integral on the right-hand side is a continuous function of x as in III, the
second and third are continuous functions of x in view of Theorem IV, since (26a) hold
and since the first of (26b) implies that lima_e» gR(y, x) = c%(x). Hence

sm _ £ 8 J- exp ("») "') iy. (29b)

We rewrite the integral on the right-hand side of (29b) as

.•» [""p 008 (>■ ~ne) +e" [ f- + ?r *»■ (30)
The first of (26b) implies that a number 0 can be found such that

9s(y, x) - c£(z) | < for y > (3 (31a)

and therefore

exp [(gB - c|)] - 1
(c2 + y2r2

. exp (| gR - c£ 1) - 1 exp (e/yr) - 1
S (c2 + y2)n/2 S (<c2 + yT2

. exp (t/yT) - 1 e_ e2 ,
yn yn+r 2 \yn+2r +

(31b)

With the introduction of this result in the integrand of the first integral of expression
(30), Theorem I applies term-by-term since n + r > 1. Thus

(32.)
T J a (C + y )

We can apply Theorem V directly to this integral, since for large y,

Awttt - 7] - -T+1 (l+') ? - -■■] (32b)
and since a value of m > 1 exists for which the limit of this expression as y —* ®> is zero
(in fact this limit will be zero as long as m < n + 2, where n + 2 > 1 since n > 0).
Hence, according to Theorem V,

Kel Q fa cos (ff7 — nd)
V"Sm - — 8 f C0S(i,'."") dy. (33a)

7T Ja y

12The similarity between the steps in this proof and those leading to VII is evident.
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Thus we may write

Kp°^ f r°° i
S>F(x) =   SS / — [cos (gr — nQ) — cos (gr — nir/2)\ dy

T Ua y

+ f ~ cos (fif/ - mr/2) dy\
J a V ) (33b)

dy
yn

But

and thus

sin 1 (e -1)sin -1 (a+1).
+ g!s r mill 7 mSld

TT Ja y

I($ ~
< - (33c)

= arctan ^ = - — - +c 2

and furthermore

sini(»-|)

y
< 2^1- (33d)

By Theorem I, therefore, the first integral in the last right-hand side of (33b) is con-
tinuous and so

. Kecl I riT „ r" cos gT , , . nx „ f"sin j, . 1 .SF(x) = l^cos — S J y Sin ~2 J ^J' ^ ^
Application of YI directly to each of these two integrals, gives

0 for £ ^ 0

. Ke . nir&F(x) = sm —
7T Z

0 if n > 1

7r if n — 1

°° if n < 1

for £ = 0 (34b)

from which Eqs. (25) immediately follow. The proof of Theorem IX is now complete.
X. It is obvious that a corollary to the preceding theorem, analogous to that of

Eqs. (16 a, b), can be written. Condition (24a) is in fact satisfied if, for large p,

m - f. [i + o(i)_ n > 0 (35a)

and the first of (24b) is satisfied if

g(p, x) - p£(«) = y + ofe). (35b)

Similarly, the calculation of discontinuities in the derivatives of the function F may be
performed by a procedure analogous to that of VIII.
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4. Illustrative examples. As an illustration of an application of the preceding theory
in the case of the Fourier sine and cosine transforms, consider the example of a semi-
infinite (x > 0) Timoshenko beam, whose end x = 0 is subjected to a step moment
M0 for t > 0, and is not allowed to displace. The bending moment M (x, t) in the beam
is then found by this type of transform to be as follows [4]:

k^a _ 2 r n + >:<?■ - «» v, - - &) cos >,<,i sin
M0 t Jo LP V (Ai — a2) J

where
2tX?,2 = p\ 1 + 7) + 1 T{[p2(T - 1) + l]2 + 4p2}1/2 (36a)

E . _ x . _ Cj£ . ,.
7 ~ fc'G ' r ' r ''

and where r is the radius of gyration of the beam cross-section, c1 the velocity of propa-
gation of longitudinal waves, k' the shear correction coefficient, and E and G the Young's
and shear moduli of the material.

To obtain the discontinuities in the bending moment, rewrite (36) as follows:

(fr) = 2 + ~ s f tsin + Vxi) - sin (Mi - P^i)] dp
\M 0/ atu-0 T JO P (."1 A2-)

- -if7T Jo

^2/ 2 __ ^2 \

 r|r [sin (X2/! + pxO - sin (X2^ - ps,)] dp.
p lAi — Ai;

(37)

(37a)

For large values of p the following relations are found from Eq. (36a):

x'"v? + 0©; +
x,V - X?7) _ nA V x- ^) _ 1 , nM
p(\1 - x2) ~ \3)' P3(x? - x22) p + \3)

(X2/i ± p^i) - p(/i ± Zi) = 0^.

The first of the integrals on the right-hand side of (37) is thus a continuous function
ofjCi and ti, by virtue of Theorem IV, while the discussion of item VII [and in particular
Eqs. (16 a, b)] applies to the second integral with

K = 1; n = 1; g(p, xj = X2*i ± ; Sfo) = 4 ± ^ . (37b)
Hence use of Eqs. (15) gives immediately

I2 |at«i = 0 1 |at 1 Jat(i—«i=0
€) = (38)

[0 everywhere else

The discontinuity of an amount 2 at Zi = 0 represents the applied bending moment13,
The points for which h + Xi = 0 are not within the physical structure, and the corre-
sponding term in (38) may thus be disregarded. The last term indicates that the bending

13It is actually equal to twice the applied moment because of the manner in which the saltus
was defined in Eq. (4). Here the quantity M(0—, <1) has no meaning, and the true discontinuity is
[M(0+, <1) - M(0, <,)] = M„.
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moment discontinuity is propagated along the beam, without change in magnitude,"
at a constant velocity ct .

To illustrate the use of the preceding theory in the case of the Laplace transforms,
consider again the beam of the preceding example, but subjected at x = 0 to a step-
variation of transverse velocity of magnitude v0 for t > 0, and with zero bending moment
there. The bending moment M(x, t) at any point of the beam is then given by [2]:

- arifr- 1) C. PlP' -4/(r- l)-r ,exp (~'w,)" esp <_",1!l)l *• (39)
where I is the moment of inertia of the beam cross-section,

2
Ml

and the other symbols have been previously defined. Separation of real and imaginary
parts, and use of symmetry properties, would put (39) in the form (23). For large values
of p we have:

Mi = p(y)W2 + 0^); ti2 = p +

1
V\V ~ 4/(t -1) -?+ ofe) (40)

ll. t-1 -- \ ._rj I \1/2t rv/l(p2, - toXi) - p(t 1 - Xi) = 0^-J; (ptt - n&i) - p[t - »i(7) .] =

and therefore the bending moment is a continuous function of x and t. Not so its deriva-
tive with respect to x, for we may write

(41)

„ d (MrcA 1 /„ fc+<c° Mi exp (ph - mi^i) ,
\EIvJ 2ri(y - 1) \S L,.„ p[p2 - 4/(7 - 1)2]1/2 V

_ c ['*" ^ exP (p'i ~ W) 7,.)
J.-*. p[p2 - 4/(7 - 1)2]1/2 Pl'

where the integrals on the right-hand side are discontinuous only at isolated points.
In fact, for large p,

mi = (7ri
p\p2 - 4/(7 - i)2]1/2 v "(?)•

• _ 1 _ ,)W - \ + "(';>).

— 1J j p

Ms
(41a)

p£p2 - 4/(7 - I)2]1

and thus with
K = (7)'/2; n = 1; ^(p, a:,) = - n&x ; £tei) = h — xfy)1/2. (42a)
14A remark concerning the sign of this discontinuity may be useful. If M is considered as a function

of xi, with <1 fixed, then M = 0 for xi > ti and M = 1 for xi = ti —0; hence
M(x 1 + 0) - M(xi - 0) = -1.

This differs in sign from the result given in Eq. (38); the reason for this is that in Eq. (38) M was regarded
as a function of £ rather than of x\. In that case then

Af(£ + 0) - Jf(£ - 0) = M(t! - xi + 0) - M(h - n - 0) = +1.
The same situation arises in the illustrative example which follows.
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in the first integral of (41) and with
K = 1; n = 1; g(p, xj = pt 1 - fi2Xi ; = h - Zi (42b)

in the second, Eqs. (35 a, b) apply and give, with Theorem IX,

SJL(:dx \
ilfrcA _ _(y)^ _ 1

at (i-n(T)l/a-0 7 1
(42)\EIvJ 7 — 1

Hence15 the bending moment distribution, though continuous, has a "kink" (namely
a discontinuity in its slope) traveling with a velocity Ci , of magnitude [1/(7 — 1)],
and another one, traveling with a velocity Ci/(t)1/2 of magnitude [(y)1/2/(7 — 1)].

As a last example, consider the calculation of discontinuities in the derivative of a
function for which a divergent integral is obtained when the processes of integration
and differentiation are interchanged as in Eq. (17). An example of this is given by

<43,

since clearly the integral
p cos pxIJo p + a

p + a

dp

does not exist. We can however write

„ dF „ d f ( 1 l\ . j „ r cos px , n ....S-r = Sj- I —; ) sin px dp = — aS / —dp = 0 (44)dx dx Jo \p + a p/ Jo p + a
since the function

"" sin px
TT Jo

dp =
V

obviously has no saltus in its derivative.
These examples might be concluded by a mention of two other methods which

have been used to determine the magnitude and location of discontinuities in problems
of this type. One of these is of course the method of characteristics (for an application
to Timoshenko beam problems see for example [5]); the other is a variational method,
in which these quantities are found by satisfying the governing differential equations
and certain dynamical and kinematical conditions at the point of discontinuity [6].
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