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The question of uniqueness concerns the possibility of two or more solutions to a
boundary value problem of the type just described.

Suppose now that two solutions exist. Let At), At) and Av< denote the
differences of these solutions. We then have—in view of some of the regularity require-
ments stated above—from the divergence theorem [5] and the boundary conditions (15)

f ■— (A an A Vt) dV = f A an AViii,- dS = f AT,- Ay,- dS — 0. (16)
Jd OXj J B Jb

On the other hand with the use of (3) and (4), (16) reduces to

A(Tij Ae,; dV = 0.L
Now by integrating (16) with respect to t and noting that A<ri# and At,',- also satisfy
the constitutive law (2) we obtain

[T dt [ A«r„ A el,dv= (If A<7„. A e'u dtj dV = f W[x, Aa,,] dV = 0. (17)
J o J D J D 0 / J D 0

If W is positive definite then (17) demands that

W[x, Al,] = 0
0

in D and therefore Ae-,(a;, t) and hence Ae(f(x, t) and Aa-,,(x, t) must vanish identically
in the time interval [0, T] everywhere in D. The last conclusion implies that there cannot
exist two distinct stress and strain fields satisfying (2), (3), (4) and (5) and (15).
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DISTORTION OF BOUSSINESQ FIELD BY CIRCULAR HOLE*
by R. M. EVAN-IWANOWSKI (.Syracuse University)

Introduction. The classical Boussinesq solution to the problem of a concentrated
load acting on the straight boundary of a semi-infinite plate is basic to a number of
problems in the plane theory of elasticity. Barjansky [1] modified the Boussinesq prob-
lem and analyzed the effects of a circular hole in the plate. In the following paper the
latter problem has been restated and some corrections affecting the results have been
made.**

*Received May 4, 1961.
"Calculations are shown in Appendix.
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Statement of the problem and general procedure. Consider a semi-infinite thin
plate containing a circular hole and loaded by a concentrated normal force P (case 2V),
Fig. la, or a concentrated tangential force P (case T), Fig. lb. The subscript 1 will refer
to the case 2V and subscript 2 to the case T.

To the Boussinesq stress function, <t>, the stress function x is added such that stress
function <E> = <£ + x will satisfy the boundary conditions around the circular hole, i.e.,
no normal and shearing stresses there. Besides, the function x must be chosen so that it
renders no stresses at infinity and results in zero normal and shearing stresses on the
straight boundary. The known Boussinesq solutions are (see Fig. la and lb)

(1)
= -(P/v)(y ~ Vo) tan 1 [(y - y0)/x],

<t>2 = —(P/ir)x tan-1 [(y - y0)/x\.

The problem is solved in bipolar coordinates:

x = — 7sinh£; y = J sin 77; J = a(cosh£ — cos ijf1. (2)

For the case considered here £ g 0. The circular boundary is specified by setting £ = £,,=
const, and the straight boundary £ = 0.

Denote:

/3 = tan-1 (y0/a); p = sin /3 cosh £; q = cos /S sinh £; \p = r? + /3. (3)

Thus (1) can be written in bipolar coordinates as

<j>2/J = (P/t) sinh £ tan-1 [(p — sin i)/q\] <tn/J = (<t>2/J)[(p — sin f)/q]. (4)

General form of the stress function x in bipolar coordinates is known, see [2], and the
stress function x satisfying the above imposed conditions is

x/J = 2?£ cosh J — [£(£ — sinh £ cosh£) + 2Fsinh2 £] cos i? + (G' cosh 2£ + F') sin tj
CO

+ X 2{[Ekak(£) + Fksk{£)\ cos krj + [E'kak(£) + Ftfk(Q] sin krj}/(k — 1),
k = 2

where ak(Q = (k — 1) sinh £ sinh ty; 6k(£) = k sinh £ cos fc£ — cosh £ sinh /c£.

(5)

The unknown coefficients in (5) are determined from the boundary conditions
around the circular hole. To this end the Boussinesq stress functions are expanded into
Fourier series in -q.

Fourier representation of functions 4>. Starting with $2, we have

where

<j}2/J = Ro/2 + X (fit cos ki] + Sk sin krj),

Ro/2 = (P sinh £/ir) tan-1 (tan /3 cth £)

+ sinh £ tan-1 [sin 2/3/(cos 2/3 — e~2J)]},

Rk = — (P sinh %/ir)eH( — \)k sin k/3/k,

Sk = — (P sinh £/x)[l — (— 1)* cos k0]/k.

(6)

see [1], p. 21)
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The Fourier coefficients of fa/J are found from (6) by multiplying <j>i/J by
(p — sin i)/q, see (3).

Case T. Tangential concentrated force P acting in the straight boundary, Fig. lb. The
required stress function has the form given in (5). Thus

$2/ J = fa/ J + X2/J,

the unknown coefficients in *2 are found from the boundary conditions around the
circular hole £0 • For this case:

F = (P/7r){(l + 4 sinh £0) sin 2/S/d, + e2£0/sinh £0 — cosh £0 tan-1 (sin 2/3/^1)1

B — (P/2ir sinh2 £0) {sinh 2f0(l + 4 sinh £0) sin 2/3/d,

— cosh £0 sinh 2£0 tan-1 (sin 2/3/d*) + e2|0(2 cosh £0 — 1) sin /3

G> = -(P/tt)(1 + coe>j8)/(l - 4e-4£0)}

F' = 0
where

4(cosh 2£0 — cos 2/3) = rf, ; cos 2/3 — e_2£° = d* . (a)

The unknown coefficients for k > 2 are:

Ek = [—P(—l)*sin fcj8(&2sinh2 £0 + k sinh £0 cosh £0 — e~H° sinh k£0)]/k Dt

Fk = —P( —l)*(fc — 1) sin ftjSsinh2 %0/Df

E'k = P[1 — ( — 1)* cos kp](k2 sinh2 £0 + & sinh £0 cosh £0 — e*£° sinh k%0)/k Dt

F'k = P(& — 1)[1 — ( —1)* cos fc/3] sinh2£0/-D*

D* = 27r(sinh2 k£0 + k2 sinh2 £0)•

(see [1], p. 25)

Case N. Normal concentrated force P acting on the straight boundary, Fig. la. In
this case the Boussinesq stress function fa is represented as

CO

fa/J = T0/2 + (Th cos kri + Uk sin kij),
k-1

where

T0/2 = (P/x) {tan /3 cosh J [tan-1 (tan /3 cth Q + sinh £ tan-1 [sin 2/3/(cos 2/3 — e~2£)]]

— e£(l + cos jS)/2 cos /3},

T1 = (P/ir) tan /3{ef sin /3 cosh £ — tan-1 (tan /3 cth £)

— sinh £ tan-1 [sin 2/3/(cos 2/3 — e~2£)]},

Us = (P/ir) {§ tan /3[1 + (1 + e2£) cos 0] — tan-1 (tan 0 cth £)

— sinh £ tan-1 [sin 2/3/(cos 2/3 — e_2£)]},

Tk = -(PeHM{Ak{Q + Pt(£)[l + (-l)'(cosWcosffll,
Uk = -{PeHM{Ak% - 73,©[(tan £>/& + (-l)*(sin t/3)/cos /?]},
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where

= (""I)4 tan /3 sin A-/3 cosh %/k,

Bk(Q — (k sinh £ — cosh |)/(k2 — 1).

Moreover

F = (P/2tt sinh2 £<>) {e£° tan /3 sin /3 cosh £0 — (1 + cos /3)/2 cos /3 —tan /3 sinh f0 cosh £0

•[sin 2/3(1 + 4 sinh £0)/4(cos 2/3 — cosh 2£0) + cosh f0 tan-1 (sin 2/3/d*)]},

-B = (1/2 sinh2 £0) {4F cosh £„ sinh £0 + CPA) tan /3 tan-1 (sin 2/3/rf*)

— sin 20(1 — 4 sinh £0)/di ~ e_2{° sin /3]},

G' — (P/'2ir sinh2 £o){e2£o sin /3 — sin 2/3(1 + 4 sinh £0)/di

+ cosh £0 tan-1 (sin 2/3/d*)},

F' = 0,

where dx and d\ are given by (a).
The unknown coefficients Ek , Fk , E'k and F'k for k 3: 2 are:

Ek = — (P/2ir) {ck sin k/3 + k dk sinh £0}/Dh ,

Fk = —{P/2ir){ek sin kfi + dkfkQc + l)"1 }/Dk ,

El, = (P/2ir) [ck cos 10 — kgk sinh2 £0}/Dk ,

F'k = (P/2tt) \ek cos A-/3 — (k + l)~lgkjk}/Dk ,

where

cA = ( — 1)' tan /3(fc sinh /f£o cosh £0 + sinh2 £0 — eH° sinh k£0),

dk = [1 — ( — 1)* cos fc/3/cos /3],

ek = (—1 )\k — 1)&_1 tan /3 (k sinh £0 cosh £0 + el° sinh ££0),

jk = (k2 sinh2 £0 ~ k sinh £0 — eki° sinh k£0),

gk = [AT1 tan /3 + (— 1)* sin ki3/cos /3],

Di = (sinh2 k£a — A;2 sinh2 £0) •

Appendix

Case k = 0. Calculation of R0 , for /3 5^ 0, (see [1], p. 28)

i?0 = (Psinh£/ir2) J tan-1 [(p — sin ip)/q]e,k* = (p/ir2) sinh £-/0 .

Integrating I0 by parts we get

I0 = t^tan-1 {(p —sin ip)/q}]*-* + f qip cos 1p d\p/(p — sin ipf = 27rtan_1 (p/q)-J0 •
J — r
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J o can be represented as

J0 = -(2 cos 2/3)~l JT - e{+<V - (e'# - e~£+,V
- («" + e£-'V + («'* +

A typical integral is:

f fe'*(e'* - d)"1 d*.

To evaluate these integrals, a complex variable f is introduced

f = ^ + iw

-r

and the integration proceeds along the contour, C, shown in the figure. Single poles
fx = /3 — if and f2 = 7r — 0 — of the first and second terms are located within the
contour of integration as shown in the figure, and the second and fourth term have
single poles outside of the contour of integration. Thus

/"/+/+/ +/"Jc JVi Jv a Jw-A •/-*

is equal to 2«" Res (f = j3 — if) for the first integral; is equal to 2iri Res (f = 7r — /3 — if)
for the third integral and zero for the second and fourth. Here Vx and FE are the vertical
segments of the integration contour. On Vi , f = ir + iw and on 72 , f = — x + ico.
It is a simple matter to demonstrate that the integrals for co = A —» °o tend to zero.
Obviously the last integrals represent parts of J0 • Now we proceed to evaluate the
integrals along Vx and V2 .

f ~ f = (* + ia)e<(T+<u)[ei(r+<u> - clT1 d(iu)
V i Jv2 Jo

- fA (-ir + to)e,(-T+""[e,'(-'+<") - clY1 d(iu)
Jo

= 2m fA e~"(e~" + ct)"1 rfco = 2«[ln («— + c*t)]0A .
Jo



1962] NOTES 365

Letting A —> oo, we get

lim 27rt'[ln (e~a + ct)]o = 2«'[ln ct — In (1 + ct)] = 2iri In [c*k/(l + ct)].
A-»co

Summing up for all k(k = 1, 2, 3, 4) we get

4 r
Y. I = 2 cos 0-J0 + 2iri{2i/3 + 2i tan-1 [sin 2/3/(cos 2/8 — e~2J)]} = 2iri(2ifi),
k-1 Jc

where Res (fx) + Res (f2) = 2i(3. Thus

Jo = (tt/cos /3) tan-1 [sin 2/3/(cos 2/3 — e~2{)]

and consequently

70 = 2x{tan_I (tan /3 coth £) + sinh £ tan-1 [sin 2/3/(eos 2/3 — e~2{)]}

and finally

720/2 = (P sinh ij/71-) {tan-1 (tan /3 cth £) + sinh J tan-1 [sin 2/3/(cos 2/3 — e~2£)]}.
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