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FLOWS OF DILATANT FLUIDS*

BY
ERIC VARLEY
Institute of Mathematical Sciences, New York University

1. Introduction. In this paper we shall be concerned with the construction and
behavior of simple models representing a class of fluids known in the literature [1] as
“dilatant fluids”.

A typical relation between shearing stress (s) and shear rate (e) for a dilatant fluid
in simple shear’ is represented by the diagram in Fig. 1, for a wide range of s. For shearing
stresses s, in the neighborhood of s = 0, the behavior of the fluid is well approximated
by that of a Newtonian fluid. However, after a certain shear rate e = ¢, , corresponding
to the shearing stress s, , has been attained, e grows not nearly as rapidly with increasing
s as in this Newtonian fluid.

In Fig. 2 we exhibit the idealisation of the s versus e relation of a dilatant fluid in
simple shear on which models for more general states of stress will be based. According
to Fig. 2 we have

2ue = s, for s <s, (1.1)
and
e=1¢ for s>s,. (1.2)

The coefficient of viscosity u in (1.1) is assumed constant for a given fluid.

There are many mathematically admissible relations between stress and velocity
strain, for completely general states of stress, which reduce to (1.1) and (1.2) when the
fluid is in simple shear. Because of the lack of experimental evidence, the motivation
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!An example of simple shear is the one-dimensional flow between two parallel plates which are in re-
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for the choice of the models discussed in this paper will be their mathematical simplicity.
The most that should be reasonably expected of the models is that they shall exhibit.
the principal qualitative features of a real dilatant fluid and hence provide a basis with
which future experimental results can be compared.

It is convenient to use the Cartesian tensor notation both to define the models and
to discuss their behavior. Let z;(¢ = 1, 2, 3) be fixed rectangular Cartesian coordinates.
If u,(z, , 2. , 23 , t) are the velocity components of the fluid particle that has the position
z; at the time ¢, the velocity strain tensor has components

e;; = 3lu.,; + u;l. (1.3)

In (1.3) the usual indicial notation has been employed: the subscript j preceded by a
comma denotes differentiation with respect to z; .
It is convenient to introduce the scalar quantities
J] = €;; , Jz = €;i€j; , and J3 = €;i€ixCki ' (1.4)’

where the usual summation convention has been used. As is well known, any invariant
of the velocity strain tensor can be expressed by means of J, , J, and J; . In terms of the
principal components ¢, , e, , e; of the velocity strain tensor, these ‘“basic invariants’
are given by

Ji=ee+e+e, Ji=e¢+e+e and Ji=¢e +e+6.  (1.5)

In generalising the mechanical behavior described by (1.1) and (1.2) we will assume
that with every dilatant fluid there can be associated a continuous function ¢(e,,) of the
components of the velocity strain tensor satisfying

¢(0) < 0; (1.6)
only flows for which
ele,) <0, 1.7y

are admissible for the model. The function ¢ will be called the ‘“dilatancy function';
it may, or may not, be analytic in the components ¢,, . The exact form of ¢ for a given
fluid should, of course, be determined experimentally. In what follows states for which

Qo(epc) < 0: (1‘8)

are called “regular states”; condition (1.6) and the assumed continuity of ¢ imply that
such states exist. States for which

Qo(epc) =0 (19)
are called “dilatant states’.

It will be assumed that, in both regular and dilatant states, the components of the
velocity strain tensor at a point in the fluid are functions of the components of the
total stress tensor p;; at that point. Moreover in the regular state the fluid is isotropie
and behaves like a Newtonian fluid. These assumptions imply that for

ﬂo(ew) < 0) (1'10)
we have

Pi; = —D i + New 6:; + 2pe;; , (1-11)
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where §;; denotes the Kronecker delta. In (1.11) A and u are characteristic constants
of the fluid; p is the thermodynamic pressure which is a specified function of the density
p and the internal energy ¢ per unit mass.

For a given dilatancy function ¢ there are many forms of the relation between p,;
and ¢;; in the dilatant state which reduce to (1.1) and (1.2) in simple shear; each relation
defines a model. In this paper we will discuss two possible models and certain features
of their flows.

2. Constitutive equations. The relation between s and e, exhibited in Fig. 2, for a
dilatant fluid in simple shear can be alternatively interpreted as the relation between
axial strain (s) and axial stress (e) for an elastic, perfectly plastic solid in simple tension
[2]. In this section we will develop a model of a dilatant fluid, for a general state of
stress, in much the same way as the elastic, perfectly plastic model of a plastic solid is
developed for a general state of strain [2].

The dilatancy function of a dilatant fluid corresponds to the yield function of an
elastic, perfectly plastic solid; while the former depends on the components of the ve-
locity strain, the latter depends on the stress components.

For our model of a dilatant fluid the stress tensor p;; is supposed to depend on the
velocity strain tensor e;; as follows:

Pii = —DP 8;; + New 6:; + 2ue;; + -6%’% ’ 2.1
where the coefficient o in the last term vanishes when the fluid is in a regular state
(¢ < 0), and is positive or zero when the fluid is in a dilatant state (¢ = 0). In (2.1),
the dilatancy function ¢ is to be written symmetrically in the symmetric components
e;; and e;; , which are formally treated as independent variables when the derivative
in the last term of (2.1) is formed. This last term expresses the assumption that in a
dilatant state the stress tensor can differ from the Newtonian one only by a positive
multiple of the derivative d¢/de;; .

The form (2.1) of the relation between p,; and e,; is analogous to the ‘flow rule’ of
elastic, perfectly plastic solids, which leads to certain uniqueness properties and ex-
tremum principles. This analogy will be further developed and exploited in what follows.

Throughout this paper we will assume that the fluid is isotropic in both regular and
dilatant states. It follows from this that the dilatancy function ¢ is a function of J, , J,
and J; only and that stress and velocity strain at any point of the fluid have a common
system of principal axes. The term d¢/de¢,; in (2.1) can then be written as follows:

Op _ Op i)
ae" 6J1 6., + 2 — a €;; + 3 e.,,e,,, . (2.2)

For Newtonian fluids, it is often stipulated that —p is identical with the mean
normal stress p;./3; the viscosity constants A and p in (1.11) must then satisfy the Stokes
relation

3\ +2u=0. 2.3)

If the same stipulation is made for the dilatant fluid with the constitutive equation
(2.1), the relation

aJ, + 2Jl + 3J2 ) =0 (2.9)

J3
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must hold in addition to (2.3). The characteristics of the homogeneous, linear partial
differential equation (2.4) are given by the relations dJ,/3 = dJ,/2J, = dJ3/3J, ,
which furnish the independent integrals

J4=J2—%Jf and J§=J3—J,J2+§J‘I'. (2.5)

The dilatancy function ¢ therefore is a function of these integrals, which are readily
seen to be the invariants

Ji = €6, and  Ji = ee€ (2.6)
of the velocity strain deviator
€; = €;; — Feu Oi; - 2.7

This restriction on ¢ implies that if e* represents a dilatant state of velocity strain then
so does e + ed;; for an arbitrary scalar e.

To sum up: if —p in (2.1) is to be identical with the mean normal stress, the stress
tensor is given by

i) d
Pii = —P 0;; + 2pe; + 2a B—fé & + 3a 5% (esveri — Fewwers 0is)- 2.8)

If the fluid is treated as incompressible, the constitutive equations (2.8) may be
retained except that the pressure p must now be regarded as the reaction to the kine-
matical constraint expressed by the incompressibility condition

e = J1 = 0. (2.9)

For an incompressible fluid, the deviator ¢;; in (2.8) is of course identical with the ve-

- locity strain e;; .
Throughout most of this paper, we shall be concerned with incompressible fluids
obeying a constitutive equation of the form (2.8), in particular with the fluid defined by
o =3Ji -k, (2.10)

where k is a characteristic constant with the dimensions 7" Since this dilatancy function
corresponds to the von Mises’ yield function in the theory of plasticity, this fluid will be
named after von Mises. If the “viscous stress tensor” is defined by

$i; =i +p i, (2.11)

where the symbols on the right have the same meaning as in (2.8), it follows from (2.8)
and (2.10) that

8;i = (2[.‘ + a)e,'i . (2'12)

This equation still contains the non-negative factor @, which can be eliminated as follows.
Multiplying each side of (2.12) by itself, using the first equation (2.6) and changing the
dummy subscripts, we obtain

SkiSk1 = (2# + a)zJé . (2'13)

According to the statement made in connection with the constitutive equation (2.1),
the coefficient a vanishes when the fluid is in a regular state, i.e. when J} < 2k’ for the
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von Mises fluid. In this case, s;; = 2ue,;; and therefore J} = (s;:8::)/(4x%). If, on the
other hand, J} = 2k?, Eq. (2.13) furnishes the value of 2u + «, which can be substituted
into (2.12). Thus, the full constitutive equation of the von Mises fluid can be written
as follows

. 272
€ = {sn‘/(zﬂ) if susu < 8k, (2.14)
ksi'i/(sklskl/2)]/2 if sklskl Z 8[42’02.

Note that (2.14) furnishes a unique velocity strain, for a given stress, but does not
possess a unique inverse.

It will be assumed throughout this paper that all components of stress and velocity
strain are continuous functions of position. Accordingly, o must vanish on the interfaces
of regions of regular and dilatant behaviour of the fluid.

3. Rectilinear flows. The equations of motion for an incompressible fluid, in the
absence of body forces, can be written

$ij.i = P« + pusu,,; + p du;/dt (¢=1,2,3), (3.1)

and .
u;,; = 0. 3.2)

Steady flows in which only one Cartesian velocity component, u,; say, is different from
zero are called rectilinear flows. Such flows are compatible with (3.2) if, and only if,

U, = ul(xg y x3), (3-3)

from which we deduce that the inertial terms in (3.1) are identically zero.

In this section we will consider possible rectilinear flows of a von Mises fluid in an
infinitely long cylindrical pipe with generators that are parallel to the x; axis; a typical
cross-section of the pipe will be denoted by B and its contour by C. We will only consider
cross-sections which are simply connected.

If the fluid is in a regular state, (3.3) and the first equation (2.14) imply that

Si2 = M aul/axg y Si3 = U 0u1/6x3 and 811 = 832 = 833 = 823 — 0. (3.4)
Equations (3.1) and (3.4) then show that
dp/dx, = —6, and 9p/dx, = dp/dx; = 0, (3.5)

where 6 is a prescribed constant which we can assume to be non-negative. From (2.14)
(3.1), (3.3) and (3.5) we deduce that

Vu, = 8u,/dxs + 9°u,/dx; = —0/n, (3.6)
if, and only if,
Vu,-Vu, = (0u;/01,)° + (0u,/0x;)° < 4k%; . (3.7)
otherwise the fluid is in a dilatant state and
YVau,-Vu, = 4k°. (3.8)

Equations (3.6) and (3.8) are to be solved, for given values of 6, u and %, subject to the
condition

u; =0 on C, 3.9
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together with the condition that for finite 6, u, and its first derivatives are continuous
on the interfaces I' of regions of regular and dilatant behavior.

If the fluid is in a dilatant state Eq. (3.8) and the condition that %, be continuous
on T determines %, uniquely: Eq. (2.12), (3.1), (3.3) and the assumed continuity of
stress imply that (3.4) and (3.5) hold with u replaced by o«'u where o’ = 1 + o/(2x)
satisfies the equation

) 9
oz, (a’ du,/02,) + oz (o’ du,/0z5) = —6/u, (3.10)

subject to the condition
o =1 on TI. (3.11)

Equations (3.6) through (3.9) are identical to the system of equations which occur in
the study of the torsion of a cylinder with simply connected cross-section which is
made of an elastic, perfectly plastic solid satisfying the von Mises yield condition [2].
To the variables u, and 6 in the torsion problem there corresponds the stress function
and the twist per unit length.

It is well known that there exists a unique solution to (3.6), satisfying (3.9), of the
form

u, = 0/uF(x, , z3), 3.12)

where F(z. , z5) is analytic, and non-negative, in the region B bounded by C. From (3.7)
and (3.12) we conclude that, for sufficiently small 6/u, only Newtonian flow occurs in the
pipe. It can be shown that, on increasing 6/u, condition (3.7) will be first violated on
the boundary C of the simply connected cross-section. Further increase of 6/ causes
the regions, in which the flow is in a dilatant state to spread from the boundary to-
wards the interior of the cross-section. The mathematical problem, for an arbitrarily
given cross-section, is extremely difficult to solve because the curves I' are not known
before-hand. However, even though the mathematical problem appears intractable,
there exists a very interesting analogy first noted by Nadai, which enables one to deduce
by experiment the distribution of u, . The mathematical difficulties and the analogy
are fully discussed in Ref. [2]. The only problem that has been solved directly is that
which corresponds to the flow in a circular pipe.

The most rewarding technique used to date in the torsion problem is the semi-
inverse method of Sokolovsky [5]. In its application to the flow problem discussed here a
solution to (3.6) is taken and, for a particular choice of 6/u, the curve I' along which
(3.8) is satisfied is determined. The curve I' can then be taken as a transition curve
and the region bounded by this curve can be taken as the core in which Newtonian flow
occurs. Outside T' u, satisfies (3.8) which can readily be integrated to determine a curve
on which %, = 0; this curve is taken as the contour C of the pipe.

As an example of the semi-inverse method of Sokolovsky we determine the contour
C which produces a Newtonian flow with a velocity field given by

u, = (04/4u){ao — (r/AY*)® + a,(r/A"*)® cos 3¢} (3.13)

for some value, 9, say, of (64'?/2uk). In (3.13), (r, ) are the polar co-ordinates of a
point in the cross-section B, A is the area of B, and a, and a, are specified constants.
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The shape of C and I are shown in Fig. 3. Of great interest in the pipe flow of a dilatant
fluid is the relation between the volume flow

Q= jf U, dz, dz, (3.14)
B
and the non-dimensional pressure gradient
0= 0A"/2uk. (3.15)
When § < 8, , the value of § at which dilatant flow first occurs,
Q/2kA** = md, (3.16)

where m is a constant which depends upon the contour C. Both 8, and m are computed

numerically. As § — « the transition curves asymptotically approach the ridges 04, ,

OA, , OA; shown in Fig. 3. The limiting value Q. of Q/(2kA**) is readily determined
g =3.7290

C:r=[1+0.062 cos 36 + 0.0l0cos68

Fi1a. 3

numerically. The information obtained on the relation between Q/(2kA*?) and § is
exhibited in Fig. 4 and is compared with the known results for a circular pipe.

4. Boundary value problems. The principal problem which arises in the study of
both Newtonian and dilatant fluids concerns the motion induced by rigid bodies moving
through the fluid in a prescribed manner. For a Newtonian fluid it is tacitly assumed
that the motions of the bodies can be prescribed arbitrarily. For a dilatant fluid the
problem of determining the limits on the admissible motions of the bodies immersed in
the fluid is fundamental to an understanding of its behavior. As a simple example we
exhibit the shear flow between two infinite parallel plates moving at a constant relative
velocity at a constant distance d apart. We specify that u; = u, = uz = 0 on the plane
2, = 0 and that p;, = 7, p.» = —p and p;; = 0 on the plane z, = d, here 7 and p are
constants. The solution to the field equations subject to these conditions is

v = {(T/n)xg if §=|r/uk] <2 1)
2kr,sgn r if 6> 2,
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while . = 43 = Pz = P2z = 0; 1y = P22 = P33z = —p and p,, = 7. From (4.1) we see
that the velocity of the plate at z, = d is restricted by | u, | < 2kd for all 7; the limitation
on the relative velocity between the two parallel plates is, of course, characteristic of
the fluid discussed here.

In this section we consider the steady motion of a fluid, which satisfies the von Mises
dilatancy condition,

%e.','e,'; - kz S 0, ' (4.2)

and is bounded by two closed, non-intersecting, regular rigid surfaces I'; and I'; . The
motion is caused by the relative motion of these surfaces. The condition that the motion
shall be steady restricts both the forms of the surfaces I, and T, and their possible
motions. In fact all admissible motions transform the surfaces into themselves. For
instance, I'; and T, could be bodies of revolution rotating with constant angular veloci-
ties about their common axis of revolution. We shall assume, for simplicity, that T'; is
at rest and that the velocities of T, are specified only to within a factor of proportionality.
The condition that there be no relative motion between a particle of fluid at a point of
the boundary and the boundary itself implies that

u; =0 on Iy, and u;, = mul(z,) on T, 4.3

where 4(z,) is a known function and m is a non-dimensional parameter. We seek the
upper bounds on m imposed by the dilatant character of the fluid.
A Mazximum principle for m. The equations expressing the conservation of momen-
tum and mass for the steady flow of any fluid in the absence of body forces are
Diii = pUU;,; , and [pw],; = 0. (4.9
If we define the “Reynolds stresses” R;; by
R = pii — puu; , (=R, (4.5)



1962] FLOW OF DILATANT FLUIDS 339

Eqgs. (4.4) imply that
R..; = 0. (4.6)
A set of functions B*,(z,) will be called a statically admissible Reynolds stress field if
(a) R*; are of class C* in D, the region bounded by I'; and T, .
(b) RY = RY. (4.7)
(¢ R%,;=0.

The divergence theorem and (4.7) imply that if u; is an arbitrary velocity field and
e;; the corresponding field of velocity strain

ff wR%n, dT = f[ e R% d D, (4.8)

T:+T, D

where n; are the components of the normal pointing away from D on T, and T, , dT
denotes an element of area of I', or I', , and dD denotes an element of volume of D.
If u, satisfy conditions (4.3) then by the Schwartz inequality

e ;RY < | €:i€ij |U2 IR:;R:« Il/zz 4.9)

and Eq. (4.3) we can deduce from (4.8) that for a von Mises fluid

m < 2%k f [[ | BxRs, 1 a D / / f wR*n, dT. (4.10)
D T

1+ T,

The inequality (4.10) furnishes a series of upper bounds for m corresponding to a series
of admissible functions R* . The aim, of course, is to minimize the right-hand side of
(4.10) by a proper choice of R * .

As an example of the above maximum principle we consider the motion between
two coaxial circular cylinders. The outer one, of radius d, is assumed to be at rest while
the inner one, of radius b, rotates with a given angular velocity for which we wish to
determined an upper bound. Letting the surface velocities u? correspond to the unit
angular velocity we may identify the factor in (4.10) with the magnitude w of the bound-
ing angular velocity.

We take the x; axis parallel to the generators of the cylinders and the origin of co-
ordinates at a point on the axis of the cylinders. The functions R * we choose as follows

R¥ = —sin 20/r°, R% = sin 26/r*, R% = cos 20/7°, and R% = R% = R% = 0, (4.11)

where (r, 6) are the cylindrical polar coordinates of a point in the fluid. The Reynolds
stresses R* given by (4.11) possess the symmetry properties of polar symmetric flow.
Onr = d,

U =1u =u; =0, (4.12)
onr =b
’ u; = —wbsin 0, U, = wb cos §, and wu; = 0.
By (4.10) (4.11) and (4.12) we deduce that
Max |w | £ 2k In (d/b). (4.13)
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It can be shown that the upper bound on | w | is exactly 2k | n(d/b); this result is, to a
large extent, fortuitous.

The maximum principle formulated above is motivated by the limit analysis of
Drucker, Greenberg, and Prager for an elastic-plastic body in plane strain [3]. In the
same paper these authors presented a minimum principle which has proved powerful
in limit analysis. However, as will be seen in what follows, the analogous minimum
principle for a dilatant fluid is of limited application.

A set of functions u%(x,) is called a kinematically admissible velocity field if

(a) w* satisfy the condition of incompressibility in D,

(b) the corresponding velocity strain field e} satisfies the dilatancy condition (4.2)

in D,

(c) u* satisfy the boundary conditions (4.3) for some value, m, say, of m.

The minimum principle can be expressed as follows. The upper limit on | m | for a
flow which is in a wholly dilatant state in D and for which the inertial terms can be
neglected in the equations of motion is not less than the maximum values of | m, |.

If the inertial terms are neglected, the momentum equations can be written

piii = O. 4.149)
By the divergence theorem, (2.12), (4.3) and (4.14) we deduce that
(m - mk) ff u?p;,"n,- dI' = ff 2#(1,(8;,' - e’.";)e,-,- dD. (4.15)
T, D

By the Schwartz inequality and the properties of e* we have
eiiet < |ees; |7 | eei ' < (2% | e |. (4.16)

If the fluid in D is in a wholly dilatant state, Eq. (4.16) and the conditions that u, o’ > 0
imply that the right hand side of (4.15) is not negative for any admissible m, . Since it is
easily seen that '

m ff ulp;m; dT' > 0, (4.17)

the minimum principle is established.
It should be noted that the minimum principle holds only if we know a priori that
the boundary conditions are such as to make the flow wholly dilatant in D.

Uniqueness of creeping motion. The equations governing the creeping motion of the
incompressible dilatant fluid discussed in Sec. 2 can be written

pii,i = 0, (4.18)
and
i =0, (4.19)

where p;; is given by (2.1).

Consider any finite, simply connected region D of the flow field with boundary B.
Let us, at every point P of B, suppose that in each of the three coordinate directions
either the component of the surface traction T or the component of the surface velocity @
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is known. Does this information determine u; , e;; and « uniquely in D? To investigate
this, assume that u. , e and o* also constitute a solution to the field equations satisfying
conditions on B. Since at P

(w; — wi)(T; — T% =0, (4.20)
then

[[ @ = vy — 1 a8 = [[ @ — @i — pton aB =0, (w21

where n; are the components of the unit outward normal to D at P. It is assumed that B
is a regular surface, that u, are C* (hence e;; are C°) and that p,; are C' in D. Applying
the divergence theorem to (4.21) and using (4.18) and (4.19) we obtain

2ufff(e.~,~—e.~"§-)(e;, e.,)dD-l-fff a”(e,,—e.-";)dD

+fffa* sen @ =) dD = 0. (422

We now restrict our consideration to dilatancy functions ¢(e;;) that are represented in
velocity strain space by convex dilatancy surfaces. This condition implies that if e,, is a
state of velocity strain for which ¢(e,,) = 0, and if e* is any other attainable state of
velocity strain (i.e. if it is represented by a point interior to, or lying on, the dilatancy
surface) then

(ess = ¢8) 22 (ep) 2 0. (4.23)

The condition that o = 0 if the fluid is in a regular state and Eq. (4.23) ensure that
each term on the left-hand side of (4.22) is non-negative; from this we immediately
deduce that

e;; = e*, (4.24)

throughout D. From (4.24) we can conclude that »* differs from u; by at most a velocity
field of a rigid-body motion. In any subregion Dy of D in which the fluid is in a regular
state (& = 0) the conditions e;; = ¢* and u; = u¥ imply that

5% —pH =0 (i=123). (4.25)
From (4.24), (4.25) and (2.1) it follows that in Dy the total stress is uniquely determined
to within a constant hydrostatic pressure. Of course if any point on the boundary of Dy
coincides with a point of B at which the normal surface traction is specified then the
components of p; , are uniquely determined within Dy .

The flow between two parallel plates shows that the stress field is not uniquely
determined when the fluid is in a dilatant state. As the region D we take the cube bounded
by the planesz, = 0,2z, = 0,23 = 0, 2, = d, 2, = d and z; = d. Instead of specifying
p12=7 we specify that u,;=2kd on the plane z,=d. In addition on z,=0 and z;=d we
specify that p;; = —pand u, = us = 0;0n z; = 0 and z; = d we specify that p;s = —p,
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and p,; = u, = 0. The solution in D is given by (4.1) which imply that any value of
r > 2uk is compatible with the boundary conditions and the dilatant character of the
fluid.

5. Unsteady shear flow. Several interesting, non-trivial, two-dimensional flows of
an incompressible von Mises dilatant fluid can be found for which the non-linear terms
in the equations of motion are identically zero. We will only consider such flows which
have a mean flow in the z, direction and are such that u, is a function of x, and ¢ only.

Flat plate with uniform suction. As a simple example we consider the steady flow in
a region z, > 0 past an infinite plate situated in the plane z, = 0.

We specify that on

Xy = 0, Uy = _vo(<0);

(5.1)
and as
Ty — @, u, — U (>0),
where v, and U., are prescribed constants.
If we define the non-dimensional variables
u=1u/U,, v = U/ , Yy =vkz/v and e =2 DU./v,
where
D = kU, (5.2)

it is readily shown that when e¢ > 1 the fluid is in the regular state for all y > 0 and the
velocity field is given by

u=1-—e¢e"? v = —1. (5.3)
When 0 < ¢ < 1 the fluid is dilatant for 0 < y < (1 — €)/e and regular for all y >
(1 — ¢)/e In the dilatant region

u=¢ and v= —1; 5.9

in the regular region
u=1—cexp{—[y— (1 —¢/e]}, and v= —1. (5.5)

The shearing stress at the wall is simply pvo,U. for all ¢ > 0 and the pressure is constant
in the whole space.

Suddenly accelerated plane wall. The motion produced in a Newtonian fluid when an
infinite plane wall is moved impulsively from rest is not only important in itself but also
in that it can be used, together with the Rayleigh analogy, to motivate the classical
Prandtl boundary layer theory for more complicated flows [5]. For a dilatant fluid no
discontinuities in the velocity components of a particle are mechanically admissible
since such discontinuities imply infinite velocity strains which, in turn, violate the dilatant
property of the fluid. However, in much the same spirit as Sokolovsky, we can use the
solution obtained for a Newtonian fluid as a possible flow of a dilatant fluid in a regular
state. The dilatant flow adjacent to, and the motion of the plane wall producing, such a
flow can then be readily determined. In this section we present the flow corresponding
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to the Newtonian motion produced when a plane wall is given an impulsive velocity
att = 0.
The equations governing the plane, unsteady rectilinear flow of the dilatant fluid are

du,/dt = v 8°u,/9x5 (5.6)
if, and only if,
| 0w, /0z, | < 2k (5.7
otherwise
| du,/dz, | = 2k, (5.8

If o', which satisfies the equation
du /ot = v = (o’ Owy/035), (5.9)
9z,

is not less than unity. We seek solutions to (5.6)-(5.8), satisfying certain prescribed
initial and boundary conditions, which are of class C* in the (. , t) plane. The condition
that the components of stress shall be continuous then implies that o’ = 1 on the transi-
tion curves.

The solution to (5.6) satisfying the conditions

t=0: u, =0 forall =z, ; (5.10)
t>0: w, = U, for z, = 0; u, =0 for z, = »,

is well known [4] and is given by

u, = Ugu(n), (5.11)
where
1= 2,/201)'"* (5.12)
and
u=1-— 20" f exp (—£&) dt. (5.13)
0

The integral in (5.12) defines the complementary error function which has been tabulated.
It is convenient to define the non-dimensional variables

= k%/Us(>0), and y = kx,/U,(>0). (5.14)

The curve T along which | du,/dz. | = 2k is determined from (5.11)-(5.14) and is given by

yh = —2rlog (4nr) for y>0 and 0< r < 417' (5.15)
The curve I' and the curve y = 0 bound a finite domain D in the (y, ) plane (Fig. 5).
Since in the region N, exterior to D, the solution (5.11)-(5.13) provides a Newtonian
flow for which | du,/dz, | < 2k this flow will be taken as a possible regular flow of the
dilatant fluid. The dilatant flow in the region D bordering the prescribed Newtonian
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flow is completely determined by (5.8) and (5.9) and the conditions that %, and du,/dz.
shall be continuous across I'. The flow in D is given by

u=1u(r) —2y for 0 <y < [—27log4nr]"?, (5.16)
where
(=[—logdrr]/s
uo(r) = 1 — 2072 f exp (—8) di + 2(—2+ log @rd)]"%.  (5.17)
0
By (5.8) and (5.9) and the requirement o’ = 1 on I' we obtain
1 du,
o — 1= E—d_‘ro {{—27 log (4xD)]'* — y}. (5.18)

From (5.16) we deduce that if, for 0 < » < 1/4r, the plane wall y = 0 is moved
with a velocity Uouo(r) the flow produced is given by (5.15) and (5.12). For all r > 1/4x
the flow is wholly Newtonian and corresponds to a plane wall moving with uniform

REGION OF REGULAR FLOW
N

FIG.5

REGION OF DILATANT FLOW
D
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velocity U, . In Fig. 5 we exhibit uo(r) and the transition curve T for 0 < 7 < 1/4w.

It should be noted that the flow produced by the motion of the wall given in Fig. 5
depends only upon the three dimensional constants k, » and U, . The only non-dimensional
parameter which can be formed from these characteristic constants is

D = (kv/Uj). (5.19)
From (5.14) and (5.15) we see that a dilatant layer of fluid exists for

0<kt< % D (5.20)

This layer is contained between the boundary wall and a regular flow region. It can be
shown that the interface between the regular and dilatant state begins its motion towards
the boundary wall when the acceleration of the wall has a stationary value.

Oscillating flat plate. In the example of the suddenly accelerated flat plate the
only dimensional constant defined by the boundary and initial conditions was the maxi-
mum velocity of the plate, U, . This constant, together with the characteristic constants
v and k of the fluid, defined the non-dimensional parameter D. In this section we consider
a motion of the boundary which introduced two dimensional quantities; the maximum
velocity U, , and the frequency of the oscillation w, of the plate.

It is convenient to introduce the non-dimensional variables

u=u/U, T = wl, y = (/»; and B = 2 D'*(k/w)'?, (5.21)

where
D =k/U;. (5.22)
In terms of the new variables the basic equations (5.6)-(5.9) become
du/dr = °u/doy’ (5.23)
if, and only if,
| ou/dy | < B; (5.24)
otherwise
| du/dy | =8 (5.25)
and
ou/or = 5‘?& (o’ 3u/3y) (5.26)
if o/ > 1.
As the flow in the regular state we take the solution to (5.23) given by
u =e "sin g ' 5.27)
where
n=2r—y. (5.28)

The parallel flow given by (5.27) corresponds to the flow induced in a Newtonian fluid
occupying the region y > 0, by an infinite flat plate moving with a velocity U, sin 2wt.
For the flow given by (5.27)

ou/dy = —2"% 'sin (1 + =/4). (5.29)
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Since the motion is periodic in time it can be determined from its behaviour for
0<r<m .

From (5.29) we see that the regular flow given by (5.27) is such that, at a fixed value
of ,

| du/dy | < (2% % < (2)'* forall y > 0. (5.30)

By (5.30) and (5.24) we deduce that when 8 > (2)'/? the dilatant fluid is in a wholly
regular state and the motion is, of course, generated by a flat plate moving with a ve-
locity U, sin 2wt.

If a region of dilatant flow can exist for 8 < (2)'/* adjacent to the region N in the
(z, ) plane the dilatant layer is restricted to 0 < y < log (2°87") (Fig. 6). In order to

—_— B=1
2 /S . B =125
10

- A Y
-
v7 1

22 24

Fi1c6. 6

determine the regions D in the (y, ) plane in which the flow is dilatant it is sufficient
to determine the regions for 0 < 7 < 7 in which du/dy = —Band o’ > 1;forif y = y-(?)
represents the transition curve between the regular flow given by (6.27) and the dilatant
flow given by du/dy = —pB then y = yr(r + w/2) represents the transition curve be-
tween the regular flow and the dilatant flow given by du/dy = B.

It is convenient to introduce the variables

g=y+logB, 7= 7+ %logB, 7 =27 —§F and 4, = exp (—§r) sin fr + gr (5.31)
in terms of which the transition curve along which du/dy = —g is given by
exp (§r) = 2" sin [z + 7/4], (5.32)
and the shear flow in D by
u=p[ —g and a =14 (da,/dn[gr — 7], (5.33)
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where
U, = exp (—Fr) sin nr + §r . (5.34)

Since, when 8 = 1, § = y and 7 = 7 the relations (5.31)-(5.34) provide the details
of the flow in D for any admissible 8 in terms of the flow when 8 = 1. Although the
curve given by (5.32) and the curve y = 0 form a closed contour in the (y, 7) plane for
all0 < 8 < (2)'* only for the range 1 < 8 < (2)'/* is the flow in the region bounded
by the contour such that « > 1. Hence only when 8 > 1 can we find a motion of the
flat plate at y = 0 which produces the regular flow given by (5.27).

When 1 < 8 < (2)'* there exists a dilatant layer of flow in which du/dy = —g for
the time intervals

nr + sin”! B/2"% — 7/4] < 7 < i[8w/4 —sin”! B/2V*] 4w, n=0,1,2,--- (5.35)

and a dilatant layer of flow in which du/dy = B for the time intervals

(m + 1/2)x + 3sin™" /2" — x/4] < 7 < }[3x/4 — sin™' §/2'*] + (m + 1/2),
m=0,1,2,---; (536)

for all other times the flow is wholly regular. It should be noted that the flow is wholly
regular for at least half of the period taken for a complete oscillation of the plate.

In Fig. 6 we exhibit the thicknesses of the dilatant layers yr , and the motions of the
flat plate at ¥y = 0 which would produce them, as functions of time for two values of the
parameter 8. It can be shown that for all values of 8 at which dilatant layers occur the
interfaces between the regular and dilatant states begin their motion towards the plane
wall when the acceleration of the wall has a stationary value.

8. Conclusion. We have constructed a model of a dilatant fluid and have discussed
certain general features of its flow. Since the interface between the dilatant region
and the regular region is not known beforehand and since the Navier-stokes equations
which govern the flow in the regular region defy, as yet, mathematical treatment, the
direct problem of determining the flow past a given body seems intractable. By far the
most powerful technique for obtaining a detailed description of a flow is the semi-inverse
technique of constructing the dilatant flow adjacent to an assumed Newtonian flow; the
boundaries producing such a flow are then determined. By this technique we have
discussed the flow down pipes, and the flow adjacent to moving planes. The results
indicate that dilatant fluids have many interesting properties.
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