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NON-LINEAR NETWORKS AND BOUNDARY VALUE PROBLEMS*
BY

T. A. DWYER
University of Dayton

1. Introduction. Birkhoff and Diaz [1] have given uniqueness theorems and a
constructive existence proof for the solution of non-linear network problems of the
type that arise in the study of hydraulic and electrical systems. In the present paper
the class of problems to which this constructive technique can be applied is extended
by removing or weakening some of the restrictions on the non-linear functions involved.
Thus elements with more general conductivity functions may be introduced into certain
branches of the network. In addition, weaker conditions on the functions governing
the external influx at the nodes are given, allowing the strict Neumann problem for
non-linear network problems (influx constant on prescribed nodes) to be treated by
this method.

Particular application of the method is made to linear systems arising from the
boundary value problems for the quasi-linear difference equation, DU = /(Z7), where D
is the Laplace difference operator. A special case of the theorems for this equation yields
the proof of convergence of an iterative procedure for the Neumann and mixed problems
for the Laplace difference equation. The convergence of this iterative procedure for the
Dirichlet problem was given by Diaz and Roberts [2],

2. Definitions and notation; the general network problem. A (finite) directed graph
or digraph [3] is a finite set of n nodes together with a finite set of m ordered pairs of
distinct nodes of the given set. The ordered pairs are called branches, and the nodes
that determine a branch are called adjacent. A branch and its nodes are said to be incident
on each other, and the digraph can be specified by means of its incidence matrix (e,,)
where en is —1, +1, or 0 if the t'th node is an initial, final or non-incident node of the
jth branch. For the node set we write P = {Pi , Pi , ■ • ■ , P„) and for the branch set
S = (Sx ,&,••• , SJ.

A network N is a digraph such that (i) each node is incident on at least one branch,
and (u) a non-empty proper subset of P denoted by B = {Pkl , Pk, , ■ ■ • , Phi) is dis-
tinguished as the boundary of N. A network is called proper [4] if no more then one
branch is determined by a pair of nodes. In this event, the notation P„Pb can be used
without ambiguity for the corresponding directed branch. A (directed) path [3] from
P0 to Pk consists of a collection of distinct nodes P0, Pi , P2 , ••• , Pk together with the
branches P0Pt , PiP2 , • • • , Ps-iP* • A network is called connected if a path exists be-
tween any two nodes of G. With no loss of generality we may restrict ourselves to proper
connected networks.

We consider two functions whose domains are network elements. A node junction
U is a real-valued function with domain P, and a brdnch function 7 is a real-valued
function with domain S. These functions can be interpreted, for example, as the voltage
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and current matrices (vectors) for electrical networks [5]. The value of U at P, will be
written U(P{) or U{ , and the value of I on Sj will be written I (Si) or 7, . If U is a
given node function, we will write (5C7),- for the difference between U at the initial node
of Sj and U at the final node of Sj . Corresponding to a node function U it will be con-
venient to define a branch function U* having the value (5f7),- on Sj .

Let C = (c,) be a set of real-valued functions of a real variable (conductivity func-
tions) associated biuniquely with the oriented branches of N, and G = (gr,-) be a set of
real-valued functions of a real variable (influx functions) associated biuniquely with
the nodes of N. With the aid of these sets of functions we define transformations in the
spaces of node and branch functions as follows. The node function

Y = G{U) (2.1)
is defined by

Y< = Y(P j) = g,(U(P,)) (2.2)
and the branch function

is defined by
J = C(I) (2.3)

Jj = J(Sj) = Ci(I(Sj)). (2.4)
We are now in a position to state the network problem which we wish to consider.

(I) General network problem. Let N be a network with node set P, boundary
set B, and branch set S. Let F be a given node function defined on B, and let C = (c,)
and G = (<?,•) be given sets of real-valued functions of real variables associated biuniquely
with the branches and nodes of N respectively. We seek to show the existence (through
the convergence of an iterative procedure) and uniqueness of a node function U such that

Uj = Fj , for Pi tB (2.5)
and

thiIj = Yh , for Pkt{P — B), (2.6)
»-i

where

Y = G{U) (2.7)
and

I = C(U*). (2.8)
Equation (2.6) will be recognized as the statement that the sum of the branch currents

leaving a node is equal to the external influx of current, while (2.8) expresses the con-
dition that the current in a given branch be a function of the potential difference across
that branch. If the given influx functions are identically zero for nodes in (P — B),
Eq. (2.6) can be interpreted as a generalization of the discrete harmonicity condition
while (2.5) becomes a statement of the boundary conditions for the problem. In this
case we can speak of a "Dirichlet problem". On the other hand, if the influx functions are
required only to be non-increasing continuous functions of the value of U at the node
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with which they are associated, we will speak of a "mixed problem". A Neumann problem
results when these functions are given as constant at each node. In this case in order to
insure a unique solution, the value of V must be assigned at an arbitrary node which
then becomes the boundary B for the problem. It will be shown in an appendix that
condition (2.6) also holds at this single node of B, provided the given data satisfy a
necessary condition.

The proof of convergence of the iterative method used in [1] is based on the following
restrictions on the functions in C and G

Cj(x) is a continuous function of x, j = 1, 2, • • • , m (2.9)

Cj(x) is a strictly increasing function of x, j = 1, 2, • • • , m (2.10)

lim Cj(x) = +oo and lim c,(x) = — °°, j = 1,2, ,m (2.11)
x-»+ CO x-*—co

c,(0) = 0, j = 1, 2, • • • , m (2.12)
g,(x) is a non-decreasing function of x,i — 1, 2, • • • , n. (2.13)

For every g{ which does not vanish identically there exists a number
xi such that < 0 and a number x2 such that

9i(x2) >0, i = 1, 2, • • • , n. (2.14)

Condition (2.10) excludes branch elements with non-decreasing conductivity func-
tions over part of their operating range (as, for example, Thyrite elements) while (2.11)
excludes saturation currents (which are typical of thermionic devices). Restriction (2.12)
rules out the consideration of networks with potential sources in the branches. Condition
(2.14) excludes the Neumann problem since it does not permit a non-zero constant
current influx at a node. We shall show that conditions (2.12) and (2.14) can be elimi-
nated, and that there are subsets of the branch set S on which (2.10) and (2.11) need
not hold. In order to state the new conditions more precisely, we first introduce the
concept of a dominant branch set.

Let N be a network with node set P. We define a function Q* with domain P X P
and range in the non-negative integers by

Q*(P< , Pf) = min (2.15)
x = number of branches in a

path from Pi to P,

Q*(P{ , Pi) = 0. (2.16)
Let B be a non-empty proper subset of P, and let B* be the class of all such sets. We
define a function Q with domain B* X P and range in the non-negative integers by

Q(B, P,) = min [Q*(P, , P,), P( t B]. (2.17)

We shall say that P.- is equivalent to P{ with respect to the set B, if Q(B, P.) = Q{B, P,).
We thus divide the set P into a finite number of equivalence classes with respect to a
given proper subset B, which we write as K0, • , K„ . The class Kr is represented
by any node P< such that Q(B, P.) = r, where r is called the rank of the class. Thus K,
is the class such that q = max Q(B, Pt) and K0 = B. We now prove.

Lemma 2.1 Let the node set P of a network N with boundary B be divided into
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equivalence classes with respect to B as above. Let P, t Kr , Kr B, and let P* be the
set of nodes in P adjacent to P, . Then

P* C \J Kr U Kr+1), (2.18)
and

i is not empty, 0 < r < q. (2.19)

Proof. Let Ph be a node adjacent to P,- . It is clear that a minimal path from Pk
to B can differ from a minimal path from P, to B by at most one segment, and hence
the nodes adjacent to P, lie in either Kr_, , Kr , or Kr+i . Now consider a minimal path
W from P, to B. By hypothesis, P, e Kt where r # 0, and therefore this path contains
at least one branch S( incident on P, . Call the other node of this branch Ph . Then the
path W with the branch S{ deleted constitutes a minimal path from I\ to B. (We
include the possibility that this path has zero segments which would correspond to the
possibility that P4 t B.) In either case, Pk t ifr_, and therefore ifr_i is not empty.

Definition 2.1. Let N be a network with its node set P divided into equivalence
classes with respect to B, the boundary of N. Let P, be a node in (P — B); thus P} e Kr ,
r + 0. Then as noted in the proof of Lemma 2.1, there is at least one branch Sf incident
on P, such that the other node of this branch lies in an equivalence class with rank
(r — 1). We call <S, a dominant branch for P, with respect to B.

Definition 2.2. Let N be a network with node set P, and boundary B. For each
node in (P — B) select a dominant branch. The set of these branches is defined as a
dominant branch set of N with respect to B, and is written as S*.

We note that there may be more than one dominant branch per node, and that
therefore S* is not unique. We are now in a position to state the conditions on the func-
tions in the classes C and G under which we will solve the network problem (I).

Definition 2.3. Let iV" be a network with branch set S and boundary B. Let S* be a
dominant branch set of N with respect to B. Then we say that the set of conductivity
functions C = (c,) belongs to the class C(S*) if, writing c,- for the function associated
with the branch S,- , we have

c,-(x) is a continuous function of x, <S,- t S (2.20)

c,(x) is a non-decreasing function of x, e S (2.21)

lim c,(x) = + oo and lim c,(x) = — , S,-1 S* (2.22)
X—»+CO X—>— CO

Cj (x) is a strictly increasing function of x, S,- t S*. (2.23)

Thus a set of conductivity functions belonging to the class C(S*) will have weaker
conditions imposed on the functions associated with the branches of (S — S*) than
those in [1], while condition (2.12) is eliminated completely. Since S* is not unique,
there is some flexibility in the choice of such branches, the scope of the choice increasing
with the complexity of the network

Definition 2.4. The set of functions G — (g,) associated with the nodes of a net-
work N will be said to belong to the class G* if

Oiix) is a non-decreasing function of x, i = 1, 2, • • • , n. (2.24)

Our principal result will be the proof of convergence of the iterative method in [1]
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for network problems in which C tC (S*) and G e G*. However we first prove two unique-
ness theorems under somewhat weaker hypotheses.

3. Uniqueness theorems. We shall give separate theorems for the uniqueness
of the branch and node functions involved in the solution of the network problem (I).
The proofs of these theorems are facilitated by first establishing a network identity.

Theorem 3.1. Let W be a node function and 7 a branch function defined on a net-
work N. Then

X wk( t ekil) + E («F),Z, = 0. (3.1)
k = 1 \j-1 / 7 = 1

Proof. The first sum in (3.1) can be viewed as a sum of the I,'s with coefficients
involving the ekj and the Wt's. It follows from the definition of eki that if we omit terms
with zero coefficients, each 7, enters this sum twice, as — I, (W at initial node of S,)
and as +/,• (W at final node of $,), or as —Ij(bW)i. Thus summing over all the branches
of S, we obtain for the first sum — y,?., (5 IF) which when added to the second sum
establishes the identity.

Theorem 3.2. Let the functions in the sets C and G used in defining the general
network problem (I) be all non-decreasing functions of a real variable, and let U be a
solution of this problem. Then the node and branch functions defined by Y = G(U)
and 7 = C(U*) are unique.

Proof. Let U and U' be two different solutions of the problem and let 7 = C(U*),
V = C(U*'), Y = G(U) and Y' = G(U') be the corresponding branch and node func-
tions. Substituting the node function (U — U') and the branch function (7 — I') in
the identity (3.1), and decomposing the first sum into sums over the nodes, in B and
(P — B), we have

£ \(Ut - U'k) i; e*,•(/,• - 7J)1 + I k- U'k) t, - V)\
k,B L j = l J k,(P-B) L ; = 1 J (3.2)

+ z K«co, - mm, - in = o,
where the notation , for example, indicates a sum over those values of k associated
with the nodes in B. Since U = U' = F on B, the first sum is zero.

From (2.6) we have that

£ - I'd = f: (kjlj - z tkjl'i = Yk - Yl = gk(Uk) - gh(UQ.
7=1 7-1 7=1

Therefore, since each gh is non-decreasing, the second sum of (3.2) is non-negative.
Since 7,- = c,[(5C/);] and I' = c,[(5f/'),] and since the c,- are non-decreasing, each term
in the last sum of (3.2) is also non-negative and therefore zero. If the second factor of
say the fcth term of this sum is zero, then Ik = I'k . If the first factor is zero,
(8U)j = (5£/'),- and again Ik = I'k. Thus 7 = I'. Similarly each term of the second sum
is zero, and Y = Y' which proves the theorem.

We note then, that under the hypothesis that the functions in the classes C and G
are merely non-decreasing, we are assured a stable state of branch currents and a stable
state of external influxes into the nodes. However examples can be constructed to show
that several potential states (node functions U) can exist and be solutions of the net-
work problem under this hypothesis. We shall now show that it suffices to strengthen
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the conditions on the conductivity functions associated with a dominant branch set to
insure a stable potential state (unique solution U).

Theorem 3.3. Consider a general network problem (I) in which the functions in
the set G are non-decreasing. Let B be the boundary set for this problem, and let S*
be a dominant branch set with respect to B. Let the functions in the set C associated
with the branches of S* be strictly increasing, while the remaining functions (associated
with the branches of (S — S*)) are non-decreasing. Then if U is a solution of (I) it is
unique.

Proof. Assume two solutions U and U' and let I = C(U*), I' = C(U*'), Y = G(U),
and Y' = G(U') be the corresponding current and influx functions. Proceeding as in
Theorem 3.2 we again obtain

E [U„ - Ul][gk(Uk) - gk(U'k)]
k, (P — B)

(3.3)
+ £ {{SU), ~ (5C/0,}{c,[(5C7),] - c,[(5£/'),]} = 0.

J=1

Since all the c, and gk are at least non-decreasing, each term of (3.3) must be zero. Con-
sidering the last sum of (3.3), if (§£/),• — (5t/')> is zero for every j, then U = V + con-
stant node function. But U = U' on B, and therefore U = U'. Suppose now
($U)k 5* (8U')k for some K. Then

ck[(SU)k] = c,[(«ffOJ.

Thus in this case I = but U ^ U'. Therefore there exists a node Ph where Uh ^ XJ'h ■
By Lemma 2.1 and Definition 2.1 we can select a dominant branch Sj incident on Pk
such that the other node of Sj is in an equivalence class (with respect to B) of rank
one less than that containing Ph . Then, since c, is a strictly increasing function on this
branch, and = /' , we must have (<5t/),- = (SU')j . Therefore at the other node of
this branch (call it Pk), Uk ^ U[ . This argument can be continued, tracing a path
through nodes in equivalence classes of successively lower rank until we reach a node
in K0 = B. But this contradicts U = U' on B and the assumption that {&U)k ̂  (8U')k
is impossible. Thus U = U' on P0 (and perforce / = /' and F = Y').

4. Upper and lower functions. The proofs of convergence of the iterative methods
in [1], [2] and [6] are dependent upon the existence of node functions that take on the
given boundary values on B while they have a property that can be described as "dis-
crete superharmonicity" or "discrete subharmonicity" on the remaining nodes of P.
Such functions are called "upper" and "lower" functions [6] and in this section we shall
show that generalized versions of such functions exist for the general network problem.

In this and the following section it will be convenient to use a more explicit notation
to express the current in a branch as a function of the potential difference across the
branch. We have previously indicated this relationship by writing I, = c,-[(6[/),-] for
the current in the direction assigned the jth branch. In writing Eq. (2.6) we imply
through the use of the ehi that a current from node 1 to node 2 is the negative of the
current from node 2 to node 1. By writing a pair of conductivity functions cit and c;(
for the branch P<P, we can make this assumption explicit as

c,.,•([/,. - Uj) = —CjiiUj - Ui), (4.1)

where cu(U* — £/,) = /t! gives the current from node P, to P, and c,<(£/,■ — J7.) =
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gives the current from node P, to P, , where and P, are the end nodes of the branch
in question, but not designated as initial or final. Thus (2.6) becomes

Z cjh(Uj - Uh) = Yh , (4.2)
1-1

where terms in the sum on the left are taken as zero for those values of j for which the
branch P,Pa does not exist.

Definition 4.1. Let N be a network with a set of 2m conductivity functions C = (ctI)
associated with the branch set S (the pair of functions c,-,- and c,-,- corresponding to the
branch P<P#) and with a set of n influx functions G = (g<) associated with the node set
P. Then a node function U defined on P is said to be unperformed with respect to C and G
at the node P, if

T,cii(Ui - Ut) < y, where Y = G(U). (4.3)
J=1

In an analogous manner, we say that U is subformed with respect to C and G at P{ if
m

YtCaiUi - Ut) > Y{ where Y = G{U). (4.4)
J = 1

Definition 4.2. Let N be a network with associated sets of 2m conductivity func-
tions C — (0^) and n influx functions G = (<;,) as above, and let F be a node function
defined on the boundary of the network B. We then say that a node function W defined
on the node set P of N is an upper function on N with respect to C, G, and F if

Wk = Fk , Pk t B, (4.5)

W is superformed with respect to C and G at all P, e (P — B). (4.6)

Definition 4.3. In an analogous manner we say that a node function V defined on
P is a lower function on N with respect to C, G, and F if

Vt = Ft , Pk e B, (4.7)

V is subformed with respect to C and G at all P, t (P — B). (4.8)

Lemma 4.1. Using the notation of Definition 4.2, let W be an upper function on
N with respect to C, G, and F where G t G*. Let M be a node function defined on P by

(i) Mki = mki for Pki t B where

(mkl , mkl , • ■ • , mkb) is a set of b non-negative constants.

(ii) Mk = (max (m,), j = , k2 , • • • , kb) + A

for Pk e (P — B), where A is a non-negative constant.

Let each c,-,(x) be a non-decreasing function of x. Then the node function Z = W + M
is an upper function with respect to C, G, and F', where F' is the node function defined
on B by P< = P, + m,- , j = fcj , k2 , • • • kb .

Proof. It is clear that the only branches on which (Z{ — Zk) differs from (PP* — Wk),
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where P< and Pk are the end nodes of such branches are those incident on nodes of B.
But here if we write P, for a node in B and Pk for an adjacent node not in B, we have

Zi — Zk = (Wi + rrii) — ('Wk + max (m,) + A)
i

< W{ + m{ — Wk — rrii = W< - Wk .

Thus, since the functions in C are non-decreasing, we have

£ cik(Zi - Zk) < £ cik(W< - Wk) < G{Wk) < G{Zk).
t'-=l t = l

Thus, since Zi = (W< + m.) = (F,- + wi,) = F', for Pi e B, Z is an upper function with
respect to C, G, and F'.

We now show that the weakened restrictions on the function sets C and G given by
(2.20), (2.21), (2.22), (2.23), and (2.24) are sufficient to guarantee the existence of upper
and lower functions for arbitrary F and B by indicating how such functions can be
constructed.

Theorem 4.1. Let 2V be a network with node set P, branch set S, and boundary
set B. Let S* be a dominant branch set of N with respect to B, and let C be a set of con-
ductivity functions in the class C(S*). Let G be a set of finite valued influx functions,
and let F be a node function defined on B. Then there exists a node function W defined
on P such that W is an upper function on N with respect to C, G, and F.

Proof. We proceed by showing how such a function W can be constructed. Define

Wi = F{ for PitB. (4.9)

Now consider the nodes in Kq , where K„ is the equivalence class in P of highest order.
Since B is a proper subset of P, q ^ 0. Define

Wj = a for Pj e K„ , where a is a real parameter. (4.10)

By Lemma 2.1, incident on any node P, in Ka there is a dominant branch PtP, such
that Pk is in KQ_1 . From the definition of C(S*), lim cki(x) = — oo. Thus for each
P,- s Kq , and for any two real numbers Za and U0 there exists a positive d' such that

ck,(-d', + Z„) < - E e„(Z0) + g^Uo). (4.11
h

h*k

In particular, letting Z0 = 0, and U0 = a, we have

Ckii-d'j) < -]Cca,(0) + £,(a). (4.12
A = 1
h*k

Let

d„ = max (dj , P, t K„). (4.13)

Now define

Wk = (a — da), for Pk e . (4.14)

Thus by (4.10), (4.12), (4.13), and (4.14) for any node P, in K, there exists a node
Pk adjacent to P, such that
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Cki(Wk - W,-) = cki(a — dQ — a) = ck,(-d«,)

< cki{~d'd < - £ c„,(0) + g,(a). (4'15)
h

h*k

But by Lemma 2.1, for Ph adjacent to a node P, in KJWh — WD has the value zero
or —d„ . Since each chi is a non-decreasing function of its argument we therefore have

-chi(Wh - WJ > -c„(0) (4.16)
so that substituting in (4.15) we have

cti(Wt - W,) < - E chi(Wh - WD + g,{a). (4.17)
A = 1

Transposing and using (4.10) we have

Z chi{W„ - WD < QiiWD (4.18)
h-1

which is the statement that W is superformed with respect to C and G at the node P, .
Now consider any node Pk e K,-i . By Lemma 2.1 and Definition 2.1 there is a

branch PJ'k in S* incident on Pk such that e K,-2 • Thus, since cik belongs to the
class C(S*) (4.11) applies. Setting Z0 = d, ,U0 = (a — dQ), we have assured the existence
of a d'k' > 0 such that, for each Pk t

cik(-d'k' + da) < - £ chk{dD + 9k{a - dQ). (4.19)

Let

h

da-1 = max {d'k , Pk e K„-D- (4.20)

Now define

Wi = (a - d„-D for P. «• K.._2 . (4.21)
Thus for the node Pk t Ktt^x , we have from (4.19), (4.20), and (4.21)

ca(Wi - wk) = cik[{a - dq-D - (a - d,)]

= cik(-da-1 + dt) < cik(—d'k' + d„) < chk(da) + 0,-(a — d„). (4.22)
h=l
h*k

But by Lemma 2.1, the nodes Ph adjacent to Pk (which is in Kq-i) lie in
K, U K.-t U . Thus

(a — d„-D — (a — d„) = d„ — da-x or

Wh — Wk = ' (a — d,) — (a — da) = 0 or (4.23)

a — (a — da) = dQ .

Thus, surely
Wh - Wk < d, . (4.24)

And since all the cu are non-decreasing,

-chk{Wh - Wk) > -chk(dQ). (4.25)
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Thus, from (4.22), (4.25), and (4.21)

eik(W* - Wk) < — £ ckk(Wh - Wk) + gk{a - dQ).
h= 1
h9*i

Thus at Pk

E c„(TF, - Wk) < gk(a - da) = ^(TFt) (4.26)
/i=l

which means that W is superformed at Pk with respect to C and G. Continuing in this
way we can define W on each equivalence class so that it will be superformed with
respect to C and G at each node of KQ , Kt-1 • , K3 , K2 .

Our definition of W may be summarized as follows:

Wi = a , P, e Kq

Wi = a — da Pi e Ka-1

W{ = a - da^ , Pi e K 0-2

Wi = a — d2 , Pit

Wi = Fi , Pi t K0 = B.

We could in fact continue this sequence of constructions to define a constant d, exactly
as above. Using this constant we can now define the parameter a to insure that W is
superformed at nodes in Kx . Let

a = F* + dl , (4.27)

where F* = max; (Fi). But if Pk is a node in , then there is a dominant branch PkPh
in S* such that Ph is in K0 = B, and

Wh — Wk = Fh — (a — d2) < F* — (a — d2) = d2 — dx . (4.28)

Thus we can proceed (as in (4.19), (4.22), and (4.23)) to establish that W is superformed
at Pk e Ki with respect to C and G. Thus W is an upper function on N with respect to
C, G, and F.

Theorem 4.2. Under the same hypothesis as in Theorem 4.1 there exists a node
function V defined on P such that V is a lower function on G with respect to C, G, and F.

The proof is completely analogous to that of Theorem 4.1.
5. Convergence of an iterative procedure for the non-linear network problem. We

now make use of the knowledge that upper and lower functions can always be found
for the network problem (I) under the hypotheses of Theorem 4.1 to show that under
these same hypotheses a procedure analogous to Gauss-Seidel iteration converges for
an arbitrary initial node function to the unique solution of (I).

Definition 5.1. Let U be a node function defined on the node set of P of a network
N, and let C and G be the conductivity and influx function sets for N. We define the
residual of U at P, with respect to C and G to be

R{U,) = t c„(Ui - U,) - g,([/,-), (5.1)
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where R is viewed as a function of the single real variable U,- , all the other Ut being
held fixed.

We remark that a node function W is superformed at P, with respect to C and G
if and only if R(W j) < 0, and a node function V is subformed at P, with respect to C
and G if and only if R(V /) > 0.

Lemma 5.1. Let N be a network with boundary B and let S* be a dominant branch
set of N with respect to B. Let C be a set of conductivity functions belonging to the
class C(S*) and let G be a set of influx functions belonging to the class G*. Then for a
node function U defined arbitrarily on (P — P,) there is exactly one value U,- such that

R(Uj) = 0. (5.2)
Proof. Since the [/,■ adjacent to £/, are fixed, by the definition of C(S*) each cis

is a continuous non-decreasing function of (—Uj). By the definition of G* each g^U-)
is a continuous non-decreasing function of Uj or a continuous non-increasing function
of (— XJj). But also by the definition of C(S*) at least one of the Ca (corresponding to a
dominant branch incident on P,) is a strictly increasing function of (— U ■) such that

lim Ci,(£/,• - Uj) = - oo
-Uj-,-a

and
lim CuiUi — Uj) = +oo.

— V /—►+ 00

Hence R is a strictly increasing continuous function of (— Uj) which varies continuously
from — oo to + oo as (—Uj) does, and therefore there is exactly one value of —Uj
(or Uj) such that R(Ut) = 0.

Definition 5.2. Let U be a node function defined on P, the node set of a network N,
and let C and G be the conductivity and influx function sets for N. Then the node func-
tion U' is called the relaxation of U at Pk with respect to C and G if (i) U' — Uj , j ^ K
and (ii) U'k is the unique solution of R(Uh) = 0.

In what follows we write W > U or W < U for two node functions if and only if
the corresponding inequality holds for the values of the functions at each node.

Lemma 5.2. Let W and U be node functions defined on the node set P of a network
N such that W > U. Let the set of conductivity functions for the network C be in C (S*)
and the set of influx functions G be in G*. Then if W' and U' are the relaxations of W
and U at Ph with respect to C and G, W' > U'.

Proof. Suppose the lemma false. Since W'{ > U'{ for P,- e (P — Ph), we must have

Wi < Ul . (5.3)
But by Definition 5.2

£ cih(W, - W'h) = gh(W'h) (5.4)
t = 1

and

±UUj - ui) = ghm. (5.5)
i = 1

By hypothesis Wt > U{ . From (5.3) — W'h > — U' and therefore

(Wi - Wi) > (Uj - U'h). (5.6)
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Since by Lemma 2.1 at least one of the functions cik is associated with a dominant
branch, cik(x) is a strictly increasing function of x. Thus from (5.6)

Z cih{wt - wo > £ Cihiy% - uq (5.7)
t = 1 1 = 1

and therefore by (5.4), (5.5), and (5.7)

9,{WO > gh{U'k). (5.8)
But from (5.3) and the hypothesis that gh(x) is a non-decreasing function of x

gh(W'h) < gh{U'h) (5.9)

which contradicts (5.8).
Lemma 5.3. Using the same notation as in Lemma 5.2, if W < U, then W' < U'.

The proof is analogous to that used in Lemma 5.2.
Definition 5.3. Let iV be a network with node set P and boundary set B. Let F

be a node function defined on B. Then a trial function on P with respect to F is a node
function U defined on P such that U{ = F{ for P, e B.

Theorem 5.1. Let G be a network with node set P, F a node function defined on the
boundary B, G a set of n finite valued influx functions, and S* a dominant branch set
of N with respect to B. Let C be a set of conductivity functions belonging to C(S*).
Then for any trial function U on P with respect to F, there are two node functions V
and W defined on P such that

(i) W is an upper function with respect to C, G, and F
(ii) V is a lower function with respect to C, G, and F

(iii) W > U > V
Proof. By Theorem 4.1 there exists an upper function W with respect to C, G,

and F and Wk = Uk = Fk for Pk t B. Let M = max (£/< , i = 1, 2, • • • , n). Using the
notation of Theorem 4.1 we consider two possibilities.

Case I. If M < (a — d2), then IJ < W on P, since (a — d2) is the minimum value
of W on (P — B).

Case II. If M > (a — d2), let D = (M — a + d2) and define a node function W* by

W? = Fi , Pi t B,
= Wi + D, Pi t (P — B).

By Lemma 4.1 W* is again an upper function with respect to C, G, and F. Further, for
P, £ (P — B) and P, t Kl we have

W*(P,) > W*(Pi) = Wi + D = (a - d2) + (M - a + d2).

Therefore
Wf > M > U, .

Thus in either case we have a function which satisfies (i) and (iii). Similarly a function
V can be found satisfying (ii) and (iii).

Corollary 5.1. If U is a trial function on P with respect to F, there exist two other
trial functions V and W (with respect to F) such that

W > U> V on P, (5.10)
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and

R(W,) < 0 < R{V,)t Pi t (P - B). (5.11)
The proof follows from Theorem 5.1 and the remark following Definition 5.1.

Lemma 5.4. Consider a network N with boundary B, and dominant branch set
with respect to B, S*. Let F be a node function defined on B, C a set of conductivity
functions in COS*), Y a set of influx functions in Y* and let U' be an upper (lower)
function with respect to C, G, and F. Let U be the relaxation of U' at P8 e (P — B)
with respect to C and G. Then U is an upper (lower) function on G with respect to C,
G, and F.

Proof. Since U differs from V only at a node of (P — B), UK = U'h = Fh for Ph e B.
It remains to show that U is superformed with respect to C and G at all P< e (P — B).
We need only consider P(, and the nodes adjacent to Pe , since at other nodes there will
have been no changes in the variables in Eq. (4.3) which defines the concept of super-
formed at a node. By the definition of relaxation at a node, at Pe

R(U,) = 0 = £*,(£/, - Ue) - gem,
1 = 1

±cAU, - U.) = geiUe), (5.12)
1 = 1

and thus U is superformed with respect to C and Y at Pn. Consider now a node adjacent
to Pe . In the proof of Lemma 5.1 it was shown that R is a strictly decreasing function
of its argument. Since R(U'e) < 0 while R(Ue) = 0, it follows that

Ue < U'e . (5.13)
Thus, since all the cu are non-decreasing functions,

c„(U, - U,) < cei(U'e - Us). (5.14)

Since U{ — if i ^ 6, we have

Rm = E c„(U, - Ut) + cM - Uj) - g,(U,). (5.15)
i = l
*9*6

Thus from (5.14), (5.12), and the hypothesis that R(U') < 0, we have

R(Uf) < R(U') < 0. (5.16)

Thus by the remark following Definition 5.1 U is superformed with respect to G and G
at all nodes in (P — B) and is therefore an upper function on N with respect to C, G,
and F. The proof for lower functions is carried out in an analogous manner.

Lemma 5.5. Using the notation of Lemma 5.4, if V is an upper function on N
with respect to C, G, and F, and U is the relaxation of U' at Pk t (P — B) with respect
to C and G, then U < U'. Similarly, if V' is a lower function on N with respect to C, G,
and F, and V is the relaxation of V' at Pk e (P — B) with respect to C and G, then
V > V'. The proof follows from (5.13) and the analogous relation for lower functions.

We are now in a position to prove the existence of a solution of the network problem
(I) under the weakened conditions on C and G. We first define the iterative procedure
on which this proof is based.
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Definition 5.3. Let N be a network with node set P and boundary B, and let F
be a node function defined on B. Let C be a set of conductivity functions for N in C(S*),
and where S* is a dominant branch set of N with respect to B, and let G be a set of
influx functions for N in Y*. Let the nodes of (P — B) be arranged in a sequence JP,}
with the property that each node appears infinitely often, but that the same node never
appears in the sequence more than a finite number of times in succession. Then for a
trial function U° on P with respect to F we define a relaxation sequence for U° with
r.espect to {P,}, written {£/'}, by

U° is the given trial function
U1 is the relaxation of U° at the first node in {P.-}

with respect to C and G
U2 is the relaxation of U1 at the second node in {P, } (5.17)

with respect to C and G

Uk is the relaxation of Uk~l at the Xth node in {P,}
with respect to C and G

Theorem 5.2. Using the notation of Definition 5.3 which is also the notation for
the general network problem (I), the relaxation sequences {£/*} for an arbitrary trial
function U° converges to a unique node function U which is the solution of the general
network problem (I) for C t C(S*) and G e G*.

Proof. By Theorem 5.1 there exist trial functions V° and W" such that V" is a
lower function with respect to C, G, and F, W° an upper function, and

V" < U" < W°. (5.18)
Forming the relaxations of all three trial functions at the first node of the sequence
{Pi} we have by Lemmas 5.2 and 5.3

V1 < U1 < W1 on P (5.19)

and by Lemma 5.4
V1 is a lower function with respect to C, G, and F.

(5.20)
W1 is an upper function with respect to C, G, and F.

By Lemma 5.5 and (5.19)

V" < V1 < U1 < W1 < W°. (5.21)

Because of (5.19) and (5.20) we may repeat this argument, and after forming the re-
laxations of the successive functions at n of the nodes in the sequence {P»} we have

V" < V1 <••'< V" < Un < Wn <•••< W1 < W" (5.22)

with the assurance that, for i = 1,2, • • • , n

V' is a lower function with respect to C, G, and F.
(5.23)

W' is an upper function with respect to C, G, and F.

From (5.22) we can see that at each node Ph in (P — B), the sequence {V\I'h) { is non-
decreasing and bounded above and that therefore the limit
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Vh = lim VI (5.24)
n—»oo

exists for Ph t (P — B). Define the node function V to have the value

Vk for Pht{P — B) and Fk for PktB. (5.25)

We will show that V is the solution of the network problem (I). By its definition U
satisfies (2.5). To show that (2.6) holds, we will show that R(V k) = 0 for Pk z (P — B).
Let Pk e (P — B). Then Pk occurs infinitely many times in the sequence {Pi}, and
therefore there is a sequence of positive integers nx , n2 , • • • such that

R(Vnk0 = 0, j = 1,2, • ■ ■ (5.26)

Since the limit of the original sequence of trial functions exists,

lim Vn(Pk) = lim V"'(Pk). (5.27)
n—»oo j-*co

Thus, since R(x) is a continuous function of x,

P[F(Pt)] = P[lim V\Pk)] = P[lim F"'(Pt)] = lim R[Vni(Pk)] = 0 (5.28)
n—► oo j'-»oo j"—*oo

which in view of the definition of R(Vk) given by (5.1) establishes (4.2) which is equiva-
lent to (2.6). Thus V is a solution of problem (I). In a similar manner the sequence
! Wn(Ph) J (which is non-increasing and bounded below) is used to define a function W
which is by the same reasoning used for V a solution of problem (I). The uniqueness
result of Theorem 3.3 then assures us that V = W, and the inequality (5.22) shows that
Un also converges to the unique solution of the general network problem (I).

6. Application to a quasi-linear difference equation. If we choose each of the
functions Cj(x) to be the linear function x, then Eq. (2.6) (or its equivalent form (4.2))
becomes

±(17,- U,) = g,(U,)
t-1

which may be regarded as the difference equation approximating the partial differential
equation VU = g(U) on an arbitrary polygonal grid, where g(U) is a continuous non-
decreasing function of U, and V is the Laplace operator. Thus the theorems of the
preceding sections insure the convergence of an iterative method for the three boundary
value problems for this difference equation. In particular, since the functions <7i(x) may
be constant, we have this result for the Neumann and mixed problems for the Laplace
and Poisson difference equations on a rectangular grid. The Dirichlet problem for the
Laplace equation for such grids was treated by Diaz and Roberts [2], and their observa-
tion that this method provides an upper and lower bound on the solution at any step
in the iteration now applies to the general case since we have shown that upper and
lower functions can always be constructed. These upper and lower bounds on the solu-
tion are provided by applying the iterative procedure outlined in Sec. 5. to the upper
and lower functions as well as to the trial solution, and so it is useful to be able to give
such functions in closed form. To do so for the Dirichlet problem for the Laplace difference
equation is trivial [6]. The following theorem shows that a closed form can also be given
for the Neumann problem for the Laplace or Poisson difference equation.

Theorem 6.1. Let Y be a node function defined on the node set P of a network N,
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and F a node function defined on the boundary B. Let q = max (Q(B, P.), Pt t P),
and K = max (0(P,), where 0(P.) = (number of segments incident on P, minus one).
Define the following quantities

^ = £ (KY, (6.1)
»-0

U = trial function on P with respect to F, (6.2)

V = max (Ui ,i= 1,2, • • • ,ri), (6.3)

M' = max (| 2/i |, | J/2 |, • • • , | Vn |, U'), (6.4)

M = M' + F', where F = max (P.). (6.5)

Then for the node function W defined on P by

Wi = Fi , Pi e B, (6.6)

we have

Wi = F' + M £ Hj , Pi t(P -B), (6.7)
i = q + 1 — Q (B , Pi)

Z (Wi - Wi) < Yi , Pi t(p -B). (6.8)

Further, W > U.
Proof. To show W > U we note that Q(B, P.) > Q(B, P,) if and only if W{ > Wf.

Thus if Pi is such that Q(B, P{) = 1, we have for P, in (P — B)

Wi > Wi = F' + MHa > M - \ F' \ = M' > Ui . (6.9)
Relation (6.8) is verified by direct substitution.

7. Appendix. It can be shown (see, for example, Saltzer [7]) that a necessary con-
dition that the Neumann problem have a solution is that Z"-i = 0> where the F,-
are the constant values of the influx prescribed at each node. Suppose (2.6) holds at the
nodes of (P — B). Then if we let W = 1 in (3.1) and write the remaining sum in two
parts, we have

E [E = - £ [£ = - E n=LFt. (7.i)
k.B i.s k,P—B j.S k, P — B k.B

But for the Neumann problem, B is a single node, and (7.1) thus becomes the statement
that (2.6) holds at this node.
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