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ON UNIQUENESS IN LINEAR VISCOELASTICITY*
by S. BREUER AND E. T. ONAT (Brown University)•

Summary. It is shown that solutions of a class of boundary value problems in
linear vicoelasticity are unique, if the relaxation moduli in shear and compression are
steadily decreasing functions of time which are convex from below and tend to non-
negative constant asymptotic values.

1. Introduction. Consider isothermal deformations of a linear isotropic visco-
elastic solid. Let t) and eif(x, t) denote the components of the stress and infinitesimal
strain tensors respectively in the rectangular cartesian coordinates x{ . Here, as in the
sequel, the single argument x stands for the triplet of coordinates (xi , x2 , x3), while I
denotes the time. With a view of stating constitutive laws governing the mechanical
behavior in a convenient form we introduce the deviatoric components of stress and strain

s,j = o'ij § dijO'kic , etj = en § Sijtkk , (1)

where <3U denotes the Kronecker-delta. We shall be concerned with the following integral
representation of the mechanical behavior [1]**

Sij(x, t) = Gx{t - t) — eu(x, t) dr,

<Tkk(x, t) = J G2(t — t) — e.kk{x, t) dr,

(2)

where Gi(t) and G2(t) are the relaxation moduli in pure shear and isotropic compression,
respectively. This representation contains the tacit assumption that the solid is in the
unstressed and unstrained virgin state for t < 0. Note also that <?i and G2 need only
be defined for non-negative values of their arguments.

In view of the relative scarcity and incompleteness of experimental information
concerning the moduli G^t) and G2{t) it is important to know what restrictions can be
imposed upon Gi and G2 on physical and mathematical grounds.

One set of such restrictions arises from the considerations of uniqueness in boundary
value problems of the quasi-static linear theory of viscoelasticity. The complete system
of field equations for such a boundary value problem consists of the equations of
equilibrium

~ t) = 0, (3)

*Received June 9,1961. The results in this paper were obtained in the course of research sponsored by
the Office of Naval Research under Contract Nonr-562(20) with Brown University.
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the displacement-strain relations
i r ^ a

(4)

and the constitutive law (2).
To these field equations, which must hold throughout the finite regular region D

occupied by the solid we adjoin the following initial and boundary conditions.
We assume that the body is initially undisturbed, so that

Ui(x, t) = <Ja{x, t) = 0 in D for t < 0. (5)

For t > 0 surface tractions .Ti(x, t) are prescribed on the part SF of the boundary B
of D and displacements uSx, t) on the remaining part of the boundary. Note that SF
may be time dependent.

If we demand that the solutions of the class of boundary value problems just de-
scribed be unique*, then Gt (t) and G2 (f) cannot be arbitrary but must meet
certain requirements.

The present paper is concerned with the elucidation of these requirements. As will
be seen in the next section these requirements on Gx and G2 (Theorems 1-3) are not
surprising and they may even be intuitively plausible. However it is hoped that the
establishment of these requirements with the help of well-known results of analysis
may constitute a starting point towards the construction of variational principles
governing deformations of viscoelastic solids for finite intervals of time.

2. Work density. We consider an arbitrary deformation of a volume element at
Xi and evaluate the work done by the stresses (per unit volume of the solid) during the
time interval [0, T]

~W\xt €»•/] J <Tii(x, f) €a(X) f) dt j ~1~ s^kk ̂  dt. (6)

Now by substituting for su and akk from (2) and extending the range of definition of
(?i and (r2 , by the definition

Ga(t) = Ga(—t) (a =1,2) (7)

(6) may be written in the following form

2 W[x, I,] = JJ Gi(t - r)£ eu(x, t) jteu{x, t) dr dt

+ I II ~T)d~r euiX' T) ft e-(X' 0 dT dt' (8)
0

where 0 is the square domain in the (t, r) plane defined by the inequalities

0 <t, t <T.

The main purpose of the present paper is to establish the restrictions to be imposed
upon Gi and G2 in order to ensure positive definiteness of W. The importance of the

*As will be seen in the last section we shall also demand that boundary value problems considered
admit solutions satisfying certain regularity requirements.
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positive definiteness of W has long been recognized in the theory of elasticity. Recently
Drucker [2] has emphasized the significance of definiteness of W or other similar forms
in the mechanics of continua. As will be seen in the next section, the positive definiteness
•of W results in the uniqueness of the solutions of the class of boundary value problems
considered in this paper.

In discussing positive definiteness of W we first note that the right-hand side of (8)
is the sum of terms of the type

w JJ G(t - T)y(t)y(r) dt dr, (9)

where G stands for either Gi or G2 and y(t) for de^/dt or dehk/dt . Moreover if each of
these terms is positive definite so is the functional (8). This leads us to examine the
conditions for the positive definiteness of the functional defined in (9). Such require-
ments are known, however, from the theory of Fourier Integrals. In fact, Bochner's
theorem [3] which plays an important part in the theory of probability provides necessary
and sufficient conditions for G(t) which ensure the non-negative definiteness of (9).

For the purposes of the present study it may suffice to give the following simplified
version of Bochner's Theorem which deals only with the Riemann integrals and aims
•only at sufficient conditions.

Theorem 1. Let the even function G(t) be continuous and piecewise smooth. If
/" | G(t) | dt exists and G(u), the Fourier transform of G(t), is positive for all real values
of u then w is positive definite, i.e.

w = JJ G(t - T)y(f)y(r) dtdr > 0 (10)

for any piecewise continuous function y(t) which does not vanish identically in the
interval [0, T\.

It may be useful to sketch the proof of the theorem. From (9) and the Fourier in-
version theorem we have

w = ^1/2 JJ (j exp [~i(t - t)u]G(u) dujy(t)y(r) dtdr. (11)

Under the conditions of the theorem the improper integral in (11) converges uniformly
[4, p. 13] so that the order of integration in (11) may be interchanged to obtain

_ r^,\ r
(2tt)

Now since y{t) is not identically zero in [0, T] there exists [4, p. 164] at least one sub-
interval of — oo <w< + oo in which

» T

exp (—itu)y(t) dt

w = * f G(u) f exp (— itu)y(t) dt
7r) J - co «■ o

2

du. (12)

/Jo
> 0,

and therefore since G(u) > 0 for — oo < u < + oo the inequality (6) follows.
Note that relaxation moduli of the form

G(t) = ± C< exp (t > 0), (13)

where C,- > 0, t,- > 0 satisfy the conditions of the theorem.
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On the other hand the restrictions of Theorem 1 on G(t) can be relaxed in two im-
portant respects as will be seen from the following theorems.

Theorem 2. If the even function G(t) is bounded and decreases steadily to 0 as t —> <»
and if it is convex from below for t > 0 then w is positive definite.

The proof of the theorem follows from a well-known lemma [4, p. 170] and may be
carried out along the lines of the previous proof.

Theorem 3. If

g(t) = C + G(t), (14)

where C is a non-negative constant and G(t) satisfies the requirements of Theorems
1 or 2, then

w = [ <3(t - T)y(t)y(r) dt dr
Jo

is positive definite. The proof follows from the observation

// 2/(%0) dt dr = y(t) dt^ > 0
Q

and Theorems 1 and 2.
Returning to viscoelastic materials we can now make the following statement: If

the relaxation moduli Gx(t) and (?£(<) satisfy the requirements of Theorem 3 then W is
positive definite.

Here we shall not discuss how the creep compliances and—in case (2) admits a
differential operator representation—the differential operators are effected by these
requirements on the relaxation moduli. However, it may be useful to summarize some
of the previous results in the following physical terms:

If for a linear viscoelastic material the relaxation moduli in shear and compression
versus time curves decrease steadily with time to non-negative constant asymptotic
values and if these curves are convex from below then positive work must be done in
order to deform such a material from the unstressed and unstrained state.

3. Uniqueness. We now show, following the basic ideas of Drucker [2], how the
positive definiteness of W is related to uniqueness.

In boundary value problems defined in the introduction it is required to determine
t), t) and Ui(x, t) in D satisfying (2), (3) and (4) and subject to the initial

conditions (5) and the boundary conditions

a an, = T< = fi(x, t) on

Ui = hi(x, t) on
for t > 0, (15)

where n, is the unit outward normal of B and /,(x, t) and hi(x, t) are given functions
of time and position on B.

Here we shall be interested in boundary value problems of this type which admit
solutions satisfying the following regularity requirements.

At any time <Tn(x, t) and vt — dUi/dt are continuous in D with piecewise continuous
partial derivatives with respect to x{ . Moreover = <3^,(2:, t)/dt are piecewise con-
tinuous in t for all times. The last condition implies, in view of (2), that t) and
Ti(x, t) are continuous in t for all times.
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The question of uniqueness concerns the possibility of two or more solutions to a
boundary value problem of the type just described.

Suppose now that two solutions exist. Let At), At) and Av< denote the
differences of these solutions. We then have—in view of some of the regularity require-
ments stated above—from the divergence theorem [5] and the boundary conditions (15)

f ■— (A an A Vt) dV = f A an AViii,- dS = f AT,- Ay,- dS — 0. (16)
Jd OXj J B Jb

On the other hand with the use of (3) and (4), (16) reduces to

A(Tij Ae,; dV = 0.L
Now by integrating (16) with respect to t and noting that A<ri# and At,',- also satisfy
the constitutive law (2) we obtain

[T dt [ A«r„ A el,dv= (If A<7„. A e'u dtj dV = f W[x, Aa,,] dV = 0. (17)
J o J D J D 0 / J D 0

If W is positive definite then (17) demands that

W[x, Al,] = 0
0

in D and therefore Ae-,(a;, t) and hence Ae(f(x, t) and Aa-,,(x, t) must vanish identically
in the time interval [0, T] everywhere in D. The last conclusion implies that there cannot
exist two distinct stress and strain fields satisfying (2), (3), (4) and (5) and (15).
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DISTORTION OF BOUSSINESQ FIELD BY CIRCULAR HOLE*
by R. M. EVAN-IWANOWSKI (.Syracuse University)

Introduction. The classical Boussinesq solution to the problem of a concentrated
load acting on the straight boundary of a semi-infinite plate is basic to a number of
problems in the plane theory of elasticity. Barjansky [1] modified the Boussinesq prob-
lem and analyzed the effects of a circular hole in the plate. In the following paper the
latter problem has been restated and some corrections affecting the results have been
made.**

*Received May 4, 1961.
"Calculations are shown in Appendix.


