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MATHEMATICAL ASPECTS OF THE PROBLEM OF ACOUSTIC WAVES
IN A PLANE STRATIFIED MEDIUM*

G. M. WING
Sandia Corporation

1. Introduction. In the last few years many papers concerning the problem of
acoustic waves in layered media have appeared in the literature. (See, for example,
Pekeris, [1, 2], Rudnick [3], and Haskell [4].) While the results obtained have often
conformed to the observed physical facts, most of these papers that have come to the
author's attention have contained ambiguities that are quite disturbing and confusing
from the mathematical viewpoint. This paper has been written to show how a rather
old, but often overlooked, device can be used to put these investigations on a firmer
mathematical basis.

We consider the specific problem of a point source of acoustic radiation of a single
frequency situated above a perfectly reflecting plane surface. The source is in a medium
of constant density and sound speed. A plane interface above the source and parallel
to the reflector separates this medium from another of different (constant) properties.
The second medium extends to infinity. We pose the problem of finding the pressure
distribution at any point in the media, concentrating on the pressure on the reflecting
surface at large distances from the source.

To avoid the analytical difficulties caused by the infinite geometry, we introduce
a small damping term in the wave equation. (For an early mention of this device, see
Lamb [8].) The result of this is that functions arising in the analysis are much better
behaved than when there is no damping. In the final result, the damping factor is allowed
to tend to zero, and the usual pressure behavior is found. In some cases, of course, it
may be desirable to examine the result for non-zero damping.

We shall attempt to point out as we go on where difficulties occur in the standard
analysis and how they are avoided here.

2. The mathematical model. We introduce a cylindrical coordinate system (see
Fig. 1). Medium I is situated between planes z = 0 and z = L. Medium II is the infinite
half-space z > L. The plane z = 0 is a perfect reflector. Media I and II are characterized
by densities px and p2 , pi s* p2 , and sound speeds cx and c2 , c, ^ c2 , respectively. A
pulsating source producing an acoustic wave of frequency co is situated at r = 0, z = z0,
0 < z0 < L, where r is the usual cylindrical radial coordinate. We ask for the pressure
at any point in the space z > 0, concentrating on that at z = 0, and with r large.
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Since the problem has no 6 dependence, the pressure field may be determined from
the potential 4> = <t>(r, z, t). Ordinarily, <f> is given by

j = 1)2; (2.1)

where <£,• is the potential function in the jth medium. However, as mentioned in Sec. 1,
we choose to introduce a small damping term in (2.1). Thus, we ask that <£ satisfy

v'*<" 3 If1 + ■" f ■ *-'•* (2-2a)
where 7, , (j = 1,2) is positive, but small. The condition that z — 0 be a perfect reflector
requires

= 0, 2 = 0; (2.2b)

while the usual conditions of continuity of pressure and vertical velocity component
at z = L give

~ai " ~tf ' " ~ 1; <2'2c)

f-f, 2-1. (2.2d)
In addition, the pressure must be "well-behaved" (at least bounded) as r2 + z —> oo,
a matter to be considered in more detail as we proceed.

Finally, there is a time-dependent source at r = 0, z = z0 ■ This we take to contain
a time factor e,at. Since time enters only in this way, we may remove the t dependence
in our problem by writing

<t>(r,z, t) = i{r,z)eiai. (2.3)

Equations (2.2) become

W, + - urri)*, = °, 3= 1,2; (2.4a)

^ = 0, 2 = 0; (2.4b)

Piii = Piii , z = L; (2.4c)

d-£ = d-£' * = L- ^

Equations (2.4), together with the source behavior at r = 0, z = z0 , then describe
our problem. We shall often write

2

k* = -2 — ior/j , j = 1,2. (2.5)
w

3. The source term. To determine the source contribution to the solution of (2.4)
we find the potential i(/, that would occur due to this source in an infinite medium with
the properties of medium I. The solution to
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W. + = 0 (3.1)
which we seek is

+, = S 6XP (~ik'R) , (3.2)

where S is the source strength and R is the spherical polar coordinate referred to the
source, R = (r2 + | z — z0 |2)1/2. The solution with the {—ikjt) exponent is chosen
instead of the one with (ikji) in order that the corresponding <j>, represent an outgoing
wave when we choose ki such that Re (/;,) > 0. We agree always to take that root of
(2.5). Since y,- is small we have, approximately,

h = («/e, - (3.3)

so that

<t>. = ^ exp [iw(t - R/Ci)] exp (—y^R/2) (3.4)

Thus <t>, is an attenuated wave, since 71 > 0. Henceforth we assume, for convenience,
that S = 1.

We now transform (3.2) by using the formula (see Watson [6, p. 416])

eXP ~l~ fo ) / 1 _ f tJo(bii)  r /j2 , 2n1/2"1 J. /O r\
(a2 _)_ b2y/2 ~ J {f -\- <r2)1/2' " (3.5)

holding for a, b non-negative and | arg <r\ < x/2. Choose a = \ z — z0 |, b = r, a = ikx .
Then

/71C1 ,
V 2 cj < —2 '| arg (iki) | = arg

and we have the representation

Ur' z) = /; C71 exp [-1 2 - 2o I (t2 - fc?)1/2] dt. (3.6)

Here the determination of (t2 — fc2)1/2 chosen is that whose real part is positive.
4. A formal solution to the problem. We now proceed with the formal solution

of (2.4). It is customary to apply the Hankel transform [5],

X/(M) = [ rJ0(\r)\pj(r, z) dr, j = 1,2. (4.1)
Jo

Consider (2.4) with j = 2. Multiplying by ./0(Xr)r and integrating by parts we find,
upon recalling Bessel's equation,

f (V2fc + kli2)J0(\r)r dr
Jo

+ xjr^2</i(Xr) |;io — X J rJ0(\r)\p rfrj (4.2)= Jn(\r)r

+ J J0(Xr) dr + k\X2 = 0.
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It is well to examine (4.2) carefully before going on. Since [6, p. 199]

J.tt) = (~)U2 COS (f - f - */*) + 0(r3/2) (4.3)

for large f, it is clear that fa must be fairly well behaved as r —> <» if the formalism of
the Hankel transform is to be legitimate. Surely we need at least rl/2xf/2 —* 0
and r1/2dfa/dr —» 0 as r —» °°.

It is not a priori clear that this is the case. We shall rely temporarily on the fact
that the kind of damping we have assumed customarily produces exponentially attenu-
ated solutions, and proceed formally, returning to this whole question at a later point.

Since fa and dfa/dr must be continuous at r = 0 we find, from (4.2),

dfx2
ds2

+ (fc; - X )X2 = o, (4.4)

making the assumption that the interchange of integration and differentiation with
respect to z is valid.

The case of fa is a little different from that of fa since ^ is admittedly singular at
r = 0, z = z0 because of the point source. However, if we define by

fa = + fa , (4.5)
then is as well behaved as fa .

We may now use the standard formal techniques [see 5] to argue that

fa(r, z) = J F2(X) exp [—z(X2 — k22)1/2]J0(\r)\ d\

+ f (?2(X) exp [z(A2 - kl)1/2]J0(\r)X d\,
Jo

fa(r, z) = fa + f I<\(\) exp [-2(X2 - kl)1/2]J0(Xr)X d\
JO

+ [ Gi(X) exp [2(X2 - k\)l/2]JQ(Xr)X d\,
Jo

(4.6a)

(4.6.b)

where Gi ,G2 ,Fl, F2, are as yet undetermined. However, it must be noted that we have
used, in obtaining (4.6), the classical inversion formula for the Hankel transform. A
sufficient condition for applicability of this formula is the convergence of

I"" rxn | fa(r, z) | dr, j = 1,2. (4.7)
Jo

This, again, may be expected because of the damping term.
In (4.6), and in all the analysis that follows, we must agree on a determination for

(X2 — k2)1/2, j = 1, 2. We shall take that branch whose real part is positive for X real.
For X complex, Re (X) > 0, we cut the plane as shown in Fig. 2. This is compatible with
(3.6).

Now we may apply (2.4b)-(2.4d), together with the condition that fa be at least
bounded as z —> <» to determine F,- and G,- , j = 1, 2. The details are lengthy and we
shall omit them. Suffice it to say that the final expressions for and fa are
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Hr, Z) = [ exp [-1 3 - 2„ | (X2 - k\)l/2] d\

+ f 12 +2° I <*' - ^ ^ (4.7.)
+ 2 f~ [D(X; /:, , bjY'UJkr, exp [-L(X' - «j](l - g|! ~ §!'!)

•cosh [20(X2 - fc?)1/2] cosh [2(x2 - k])U2] dx,

Mr, z) = — f [D(\; k, , /c2)]_1XJo(Xr) exp [-L(X2 - fc?)1/2](X2 - &2)1/2
P2 JO

• {sinh [L(X2 - k\)1/2] + cosh [L(X2 - fc2)1/2](

•exp [—(L - 2)(X2 - kl)1/2] cosh [20(X2 - k\)in] d\,

where

D(X; , k2) = (X2 - fc?)1/2 sinh [L(X2 - k\)1/2]

+ ^ (X2 - kl)1'2 cosh [L(X2 - A$1/a].
P2

(4.7b)

(4.8)

(4.9)

We shall be especially interested in

h(r, 0) = 2 f" XJo(Xr) e^2 [I fe2(y/2~ fc')V2] dX + 2 j" [D(\; k, , fc2)]~1X7o(Xr)

•exp [—L(X2 - fc?)1/2](l - cosh [20(X3 - tf)I/2] tfX.

5. Discussion of the formal solution. As has been mentioned in several places, the
results thus far obtained must be considered as purely formal. The validity of (4.7)
could be established by studying the convergence properties of the integrals, carrying
out various differentiations, and then checking to determine whether Eqs. (2.4) are
indeed satisfied. This would guarantee that we have found a solution to our problem.
The details necessary to justify these manipulations are essentially covered in suggestions
regarding the treatment of (4.9), on which we now concentrate.
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The first integral in (4.9) represents the contribution of the source and its mirror
image, the latter arising because of the perfect reflection at z = 0. We may focus further
attention on the second integral, which we call 2K. It is clear that an understanding
of the behavior of the denominator D is essential.

We choose to consider D as a function of a complex variable X. As such, it is analytic
everywhere save at X = ±fc2 , where there are branch points. To study the zeros of D
we initially consider the case and k2 real, arising from ji = y2 = 0, which implies no
damping. We write fc, (0) and k2(0) to indicate this, and examine two cases.

Case I 0 < ki(0) < k2{0) < oo ; or cx > c2 .

The first term in D is always real for real X. The second is pure imaginary or zero
for 0 < X < k2 (0). If this term is zero then cosh {L[X2 — /cj (0) ]1/2} = 0. But
then sinh {L[X2 — fc2(0)]I/2} ̂  0 and D ^ 0. For X = k2(0) the first term is positive,
while for X > k2(0) both terms in D are positive.

Hence D has no real zeros in Case I.

Case II 0 < k2(0) < k^O) < oo ■ or c, > c2 .

Here the arguments are similar for 0 < X < /c2(0), and for fc^O) < X < oo. However,
the situation for 7c2(0) < X < /c, (0) is quite different. In fact, we find that D has zeros
where

tan (L,) = ~ g°» ~ ft" , (5.1)

/32 = k:(0) - X2.

/(k^(0)-k|(0)) -0Z

Fig. 3.
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That (5.1) has at least one but not more than a finite number of real solutions is readily
seen from Fig. 3.

Hence when 71 = y2 = 0 and fc2(0) < ky(0), Eqs. (4.7) and (4.9) are quite meaningless
as they stand since D has zeros on the path of integration. This is a difficulty which
arises in the usual treatment of such acoustic problems as ours. Ordinarily an interpre-
tation is given to the integrals, which, it eventually develops, is physically satisfactory.
The mathematical ambiguity is directly connected with the fact that the Hankel trans-
form in its classical form cannot be applied to our problem in the undamped case.

If, however, we take 71 and 72 small but positive the trouble vanishes automatically.
To see this we study the function

Pi(X2 - 1}D*(X; k, , k2) = <jtan [L(k\ - X2)1/2] - _ n2 _ x2)1/2j

<tan [L(k\ - A2)172] + ^ ^175> (5.2)

p,(K - x2)
Pi(x2 - fc2)1/2

M - X2)

- w* - - fe)'(^)'
which has the advantage over D of being single valued. Consider Case II and let X0
be a real zero of D. Then

D*(\0;ki(0), fc2(0)) = 0. (5.3)

Let fci and fc2 now have small negative imaginary parts ei and t2 resulting from a small
positive damping factor. Then, since D* is analytic in a region containing X0 but avoiding
&i(0) and poles of the tangent, we may apply the theorem of Hurwitz on the zeros of a
convergent sequence of analytic functions (Titchmarsh [7, p. 119]) and assert that X0
will change slightly to X0 + (<r + it). Thus, to first order in e, and e2 ,

-D*(X0 + (c + ir); fci(0) + tii, k2( 0) + e2i)

, . . N dD* , . dD* , . dD* n (5-4)= (a + it) — + £lz "^7 + ^^-0,

where the partial derivatives are all evaluated at X0 , fc^O), fc2(0). It is readily seen that

^<0, ^>0, ^>0. (5.5)d\ dki dk2

Hence r < 0, proving that the real zeros of D move below the axis when small damping
is included.

It follows also from Hurwitz's theorem that other roots of D cannot at the same
time move onto the real axis. Further, the roots indicated in Fig. 3 are clearly simple.
They must, by Hurwitz's theorem, remain that way when 7t > 0 and 72 > 0
are introduced.

It is now clear that the integrals (4.7) are meaningful when damping is considered.
Their convergence properties are easily ascertained. We turn now to the asymptotic
evaluation of (4.9) for large r.

6. An asymptotic estimate of ^(r, 0). Our attention focuses on the second integral,
2K, of (4.9). It is convenient to write

J o(Xr) = !{#oU(Xr) + #o2>(Xr)}, (6.1)
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where ffo''(V)> i — 1> 2, are the Hankel functions as defined in [6, p. 73]. Of particular
importance for us are the results [6, p. 170 and p. 211]

H!"(e " a%j I Im®£0'

and
IC® I < G\r1/2ei( I, Re © > 0,
I H™(£) | < G | r1/2e-<f |, Re (£) > 0,

where G is a positive constant.
First consider for R fixed, R > max {| fcj |, | fc2 |}, but otherwise arbitrary,

(6.2)

(6.3)

<6-4»

where

N(\; h , k2) = exp [—L(X2 - /c?),/2](l - ^ ~ ^l) cosh [2„(X2 - k\)1/2]. (6.5)

Using the estimate (4.3) with v = 0 it is easily seen that

| K(R) | < F{R)r~3/\ (6.6)

where F is independent of fci and k2 for small Ti , y2 .
We are now left, using (6.1), with the study of

(6.7)

with j = 1, 2.
We concentrate on iv2 . The integrand is not singular on the real axis. The branch

lines, according to our agreement in Sec. 4, lie below the real axis. We consider the
contour shown in Fig. 4.

Obviously,
r.R 11 /.

— + X ® = 2iri 2 Residues. (6.8)
Ci

First, it may be shown that

I D(\;ki ,k2)\ > MeLn'a) (6.9)

provided we choose R = 2nir + 7r/4, n large. The details are messy but elementary and
we omit them. In (6.9) M is independent of kl , k2 , and n.

On Cu , Re [(X2 — /c2)1/2] > 0, and therefore the integrand, exclusive of H(02)(\r),
is bounded on this contour. Hence, using (6.3), we have

I r I /»*/2
/ < m / e-rB,iae(rR)-1/2Rdd < m'Rru\-3/\ (6.10)

I Jc 11 I Jo

where m, m', etc. henceforth represent constants independent of /ci , fc2 , and R.



1962] ACOUSTIC WAVES IN A PLANE STRATIFIED MEDIUM 317

Fig. 4.

On C3 and C1 it is no longer true that Re [(X2 — k\Y/2] > 0, since the contour
gone around the branch point /c, . However, for these contours we have, for large R,

-Re [(X2 - tf)1/2] < 2Re (fc,), (6.11)

so that the same kind of estimate holds as in (6.10).
On C2 we use (6.2).

I f ! f" f°° e~VTt m"'IL. I -m" ldy L (f -1rdt - ~ (6-i2)
For Cs we assume that no zero of D occurs on or near C8 . If it does we distort the

contour slightly. Then

L = Ic 7/°2>(Xr)dx> (e-13)

where | P | < ri(R), independent of and k2 . From this we easily see, using
X = e3"/2y + fc, , that

/ I < (6.14,JC. I T

A similar estimate holds for CV
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The calculations along other contours are quite similar, and we may leave them to
the reader. To summarize,

K2(R) = -2m £ Residues + A*(R>r>^ ', (6.15)

where A2 is bounded as a function of r, , and y2 ■
The integration of Kt is accomplished by using a path in the upper half plane. The

manipulations are easier than for K2 and we have

Kt(B) = 2Sri Residues + r|T' > ̂  . (6.16)

Our work in Sec. 5 has shown that there are certain simple poles with small imaginary
parts in the lower right half plane. We designate these by X,- = e, — in,- , n,- > 0, j = 1,
2, • • • , N. There may be other poles in the right half plane, but, wherever they are,
their imaginary parts do not tend to zero as the damping tends to zero. Call
these X< = v' + in' . We concentrate on X, . Using [6, p. 212]

H°2>® = (ri)12 eXP [~i(( ~ 7r/4)] + °(r3/2)' (6"17)

lue at X,,

r 2 T/2Ri = ~ ^,)J exp [-iirvj - tt/4)]

Vtrf
we find, for the residue at X,,

•exp (—rm) N{Xi ; ' fcz) + 0(r~3/2).

^ Z)(X; fc, , fc2)|Xf

(6.18)

The first term is exponentially attenuated but the constant is small for small
damping. The term contains a factor r~1/2, as contrasted with the r'1 factor produced
by the contour integrations. Thus this residue term can make the dominant contribu-
tion for moderate r. The relative contributions could be better estimated by a more
careful study of the contour integrations, but we have not deemed this worthwhile,
since we are primarily interested in the limiting case of zero damping. There n, —> 0.

For any other poles X' the exponential decay factor is exp (—n'r) and this remains
effective when the damping goes to zero since the n' do not vanish.

Inasmuch as only a finite number of poles of the integrand lie within the contour
used, and this number, by virtue of Hurwitz's theorem, must remain finite as yi and
72 —> 0, we may pass to the limit in our final results, and get

/o \ 1/2 V
4>i(r, 0, t) = -ZiyyJ XJ exp - oj/)]

v)/2N{Vj ■ fc,(0), fc2(0)) + A{R, r) (6"19)

~ D(\; ki(0), fc2(0))|,,

where A (R, r) is bounded in r.
In case ki(0) < /c2(0) the sum is empty.
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7. Final remarks and mathematical retrospect. The form of (6.19) is the customary
one for such problems. It should be noted that fa does not, in the undamped case, satisfy
the conditions sufficient for the applicability of the Hankel transform. Thus, previous
ambiguities experienced in dealing with this kind of problem may be traced directly
to the improper use of the transform method. The introduction of the damping term,
whether one views it as a mathematical fiction or a physical reality, is a convenient
way of avoiding these difficulties.

Finally, it should be remarked that Eq. (6.19) strongly suggests that no poles can
occur in the upper right portion of the X-plane, since such a pole would give rise to a
term exp [i(rv' + &><)] exp (—/a'r) representing a converging wave. There is no physical
mechanism for producing such waves.
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