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ON THE FOLDING OF A VISCOELASTIC MEDIUM WITH ADHERING
LAYER UNDER COMPRESSIVE INITIAL STRESS*

by M. A. BIOT and H. ODE (Shell Development Co.)

Abstract. The exact solution is given for the folding by compression of a visco-
elastic layer embedded in a viscoelastic medium, under the assumption that there is
perfect adherence between layer and medium. This solution agrees closely with the
earlier result obtained by Biot which was based on the assumption that layer and medium
could slip over each other.

In a previous publication, Biot [1] has discussed the case of folding a layered visco-
elastic medium under initial stress. An exact solution was presented for the folding,
due to instability, of a viscoelastic layer of thickness h embedded in a viscoelastic medium
extending infinitely far in both directions perpendicular to the layer; the assumption
was made that layer and medium did not adhere and could slip over one another as if
perfectly lubricated. An approximate solution for the case of perfect adherence was
developed in a second publication of the same year by Biot [2], The influence of the
adherence was found to be small. The purpose of this note is to check this conclusion
by an exact solution for the case when perfect adherence exists between layer and medium.

The method is the same as that in Ref. [1] and it combines two distinct developments
contained in earlier work by the same author. One of these developments is the theory
of elasticity of a medium under initial stress (1934-1941). The other was introduced as
a correspondence principle (1954-56) by which elastic moduli are replaced by corre-
sponding operators [3, 4, 5]. Results are therefore applicable to either elastic or visco-
elastic media of a very general nature. It was shown at the same time that the corre-
spondence extends to problems which involve anisotropy, dynamics, wave propagation,
and variational procedures. The mathematical restrictions on the operators were also
derived from thermodynamics [3].

The horizontal and vertical displacements u and v, in the layer representing the
departure of the displacement from an initial steady state, satisfy the equations

(1)

which are a consequence of Eq. (3.7) of Ref. [1].
Q is a time operator, defined in [1], which reduces in case of Newtonian viscosity to

n d/dt, where m is the viscosity coefficient. P is the initial compressive stress. An equa-
tion similar to Eqs. (1) holds for the embedding medium, with the difference that now
indexed symbols Qi and Pj are used.

The forces per unit initial area exerted on the medium by the layer are Fx and Fv
(Fig. 1); those per unit initial area exerted on the layer are F'x and F'v . Equilibrium
requires that

. F~ F* (2)
"* F, - -Ft

*Received May 18, 1961.
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Fig. 1. Diagram of the forces acting between layer and embedding medium.

Solutions of Eqs. (1), which are pertinent, are

u = 23 ^ieK<!"sin Ix
(3)

v = 22 cos Zz,
where

^= ±i' ±(I|tI) •
Because these solutions must also satisfy Eqs. (3.7) of Ref. [1], there are only four
independent constants.

For the infinite medium only negative exponents apply, whereas for the layer, hyper-
bolic sines and cosines must be taken. By expressing the boundary conditions in terms
of the strain components, we find that

Fx = t0 sin Ix F'x = to sin Ix ^

F„ = q0 cos Ix F'y = q'a cos Ix

in which t0 , q0, r'0, and q'a are given in terms of P, Q, Pi , Qi , and the integration con-
stants of Eqs. (3). Because of symmetry, it is sufficient to consider only the conditions
on one of the interfaces. At this interface, we write the layer displacement as

u = U0 sin Ix ...
(5)

v = V0 cos Ix.

Thus, by Eqs. (3), the integration constants can be expressed in terms of U0 and V0 •
Introducing these in Eqs. (4), the resulting equations are

TO — CiiUq + CI2V0
and W

So = C21U0 + C22Vo ,

where C„- is a function of Q, R, and P. R is an operator related to the compressibility
of the layer.

Because of the assumption of perfect adherence, the same equations (5) holds for
the medium at the interface. Hence, an equation similar to (6) can be written for ir'0
and q'0 .
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The coefficients C,-,- in Eqs. (6) are not necessarily symmetric. The reason for this
is that we have used a stress-strain relation involving a symmetric matrix, whereas
the actual incremental stresses and strains as a consequence of thermodynamic principles
cannot, in general, be expressed by means of symmetric elastic moduli or operators [2].
This difficulty disappears however, if we are dealing with an isotropic incompressible
material. In this case, the matrix in Eqs. (6) is symmetric.

The two sets of equations of the type of Eq. (6)—one for the layer and one for the
medium—reduce by Eqs. (2) to two linear homogeneous equations in the unknowns
U0 and V0 ■ The condition that these equations are compatible then leads to the stability
equation. For the particular case where both layer and medium are perfectly incom-
pressible and the prestress in the medium is assumed to be zero—that is, the compression
is wholly supported by the stiff layer—the stability equation becomes

(1 — n2) tanh y = [(1 + f)2 — n2]k tanh ky + nf(l + k tanh 7-tanh ky), (7)

in which

_ Si -7 h » - JL A t _ (In Q ' 7 2 ' ? 20 ' \1Q ' ' 2 ' s 2Q ' \1 + f,

A diagram of Eq. (7) is shown in Fig. 2 for the case of purely viscous solids, i.e., for
n = Mi/W (ratio of viscosities).
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Fig. 2. Graph of Eq. (7) for purely viscous solids.

An infinite number of branches result. The only branch that is significant is curve A
of Fig. 2, which is shown here for the particular value n = 1/144 of the viscosity ratio.
It shows a dominant wavelength corresponding to yd , where f reaches a minimum value.
Some of the other branches are also shown in the diagram—curves B and C for n = 1/15.
They have the vertical asymptotes y = -k, 2ir, etc. For a Newtonian fluid, they are
physically spurious in the region f<— 1 or f > 1, because where | f | is close to or
larger than unity, the solutions lose their physical significance. On the other hand, for
a strongly non-linear solid which exhibits plastic flow, the solutions may be physically
significant in a larger range of f. But the question arises whether the incremental proper-
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ties remain isotropic. These remarks should also be kept in mind in connection with the
physical significance of some of the results of Ref. 1 in their application to Newtonian
fluids.

The solution we have obtained is also directly applicable to the stability of purely
elastic media when the operators are replaced by elastic moduli. In this case, for a
material which is isotropic in the unstressed state, the only accessible values of | f [ are
smaller than unity. These points will be discussed more extensively in a forthcoming
publication.

For values 0.618 < n < 1, branch A moves into the region f > 1 (as shown by curve
A') and has no minimum. Hence, for the reason stated previously, the branch A' be-
comes physically spurious.

For materials of more general viscoelastic properties, a set of curves A, each com-
puted for a different viscosity ratio n, can serve as a master plot in determining the
dominant wavelength at a given strain rate.

Comparison of the results of the solutions for perfect slip and perfect adherence
shows very little difference. Most of the difference is in the region of dominant wave-
length, but even here the value of f varies by less than 2 percent, and the shift in domi-
nant wavelength is of the same order of magnitude. For practical purposes, it therefore
seems sufficient to use the theory without adherence; this agrees with the conclusions
of Ref. [2], It is interesting that outside the region of dominant wavelength, the solu-
tions (for incompressible media) with or without slip become indistinguishable to a high
order of accuracy.

The influence of compressibility under conditions probably prevailing in the earth's
crust is negligible. The general form of Eq. (7), as we take into account the compressi-
bility of layer and medium, contains a number of additional terms, each containing one
of the factors

— Q / _ Qi /o\a Q + R ' a Qi + Rr ' ( }

or both. For elastic compressibility [3],

R = K — §Q, (9)

where K is the bulk modulus of the material, which is here a constant. We have

3

i + ef r (10)

which shows that the effect of compressibility depends on the magnitude of the com-
pressive load. For loads P much smaller than K, a and a' will be small quantities; then
compressibility will not be important. For large values of P, however, the changes in
dominant wavelength and strain rate may become appreciable.
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ON UNIQUENESS IN LINEAR VISCOELASTICITY*
by S. BREUER AND E. T. ONAT (Brown University)•

Summary. It is shown that solutions of a class of boundary value problems in
linear vicoelasticity are unique, if the relaxation moduli in shear and compression are
steadily decreasing functions of time which are convex from below and tend to non-
negative constant asymptotic values.

1. Introduction. Consider isothermal deformations of a linear isotropic visco-
elastic solid. Let t) and eif(x, t) denote the components of the stress and infinitesimal
strain tensors respectively in the rectangular cartesian coordinates x{ . Here, as in the
sequel, the single argument x stands for the triplet of coordinates (xi , x2 , x3), while I
denotes the time. With a view of stating constitutive laws governing the mechanical
behavior in a convenient form we introduce the deviatoric components of stress and strain

s,j = o'ij § dijO'kic , etj = en § Sijtkk , (1)

where <3U denotes the Kronecker-delta. We shall be concerned with the following integral
representation of the mechanical behavior [1]**

Sij(x, t) = Gx{t - t) — eu(x, t) dr,

<Tkk(x, t) = J G2(t — t) — e.kk{x, t) dr,

(2)

where Gi(t) and G2(t) are the relaxation moduli in pure shear and isotropic compression,
respectively. This representation contains the tacit assumption that the solid is in the
unstressed and unstrained virgin state for t < 0. Note also that <?i and G2 need only
be defined for non-negative values of their arguments.

In view of the relative scarcity and incompleteness of experimental information
concerning the moduli G^t) and G2{t) it is important to know what restrictions can be
imposed upon Gi and G2 on physical and mathematical grounds.

One set of such restrictions arises from the considerations of uniqueness in boundary
value problems of the quasi-static linear theory of viscoelasticity. The complete system
of field equations for such a boundary value problem consists of the equations of
equilibrium

~ t) = 0, (3)

*Received June 9,1961. The results in this paper were obtained in the course of research sponsored by
the Office of Naval Research under Contract Nonr-562(20) with Brown University.

**Numbers in square brackets refer to the Bibliography at the end of the paper.


