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then for t > 0
I Wit) I < \ °-n\ ^ n 1 , ] 1 | t" " , , | Op 1 r 1 , .
1 W 1 S (m - n - 1)! + (m-n)! + (to - 1)! ( j

If we replace the restriction that m > 2n by the condition that w(t) > 0, a similar
inequality results and it has a very simple proof.

More specifically, if w{t) is a real-valued non-negative junction of the real variable t
and is zero for t < 0 and if its Laplace transform is given by (1) where m > n and the roots
of the polynomial D(s) have non-positive real parts, then for t > 0

itn—n— 1 jm—n »m —1
w(t) <  — + ,a-1? + • • • + , aot (3)

(m — n — 1)! (m — n)! (m — 1)!

To establish this result, let
a„s" + • • • + a0 s* + • • • + b0F(s) Sm +■■■+ b0

The corresponding inverse Laplace transform that is zero for t <0 may be written as
follows for t > 0.

.to —n—1 /to — 1

f( A =  2n£ l ... j  
(to — n — 1)! (to — 1)!

= w(t) + i / w(a;) da: + • • •
-'o

+ (to — 1)! fo {t - dx- (4)
Since the roots of D(s) are real or appear in complex-conjugate pairs and their real parts
are all non-positive, every b( is non-negative. Thus, all terms on the right-hand side of (4)
are non-negative so that (4) implies (3).
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AN APPLICATION OF THE EULER-MACLAURIN SUM FORMULA
TO OPERATIONAL MATHEMATICS*

By IRVING FRANK (Avco-Everett Research Laboratory, Everett, Mass.)

Introduction. The use of operational methods is especially well adapted to the
solution of various problems in applied mathematics. Thus, in problems on heat con-
duction one is often enabled to find special solutions of the heat balance equation suitable
for large or small values of time. It is shown in the present study that the Euler-Maclaurin
sum formula may be used in some cases to generate approximate solutions to the heat
balance equation which give good results for all values of time, using only a limited
number of terms.
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Analysis. One form of the Euler-Maclaurin sum formula is [1]

£'* = !/>>dx +1«°> + -30&)"0'

+ — CM!d>
where fk = f(a + kh), Em is the error term, and

_ 2(—l)"(2m)! / _1_ J_ \
-°2m — (27r)2W \ 22m 32m * ' 'J W

are the Bernoulh numbers.
In order to illustrate the application of Eq. (1), consider the following problem: the

slab 0 < x < x0 with zero initial temperature, insulated at the face x = 0, while there is
a constant heat flux F into the slab at x = x0. The Laplace Transform of the temperature
at x = x0 is given by

toi = /<;, + ""p [~2f , (3)kpq( 1 — exp [—2qx0})

where T denotes the temperature, p the Laplace Transform variable, a the diffusivity,.
k the conductivity, and q = (p/a)1/2.

Expanding Eq. (3) in negative exponentials, one finds

L[T(x0)] = [| + ZJ exp (-2nqx0)J- (4)

It will be noted that the summation in Equation (4) is of the form X/iT-o /(a + kh),
where a = h = 2qx0 .

It will be noted, that L[T(x0)] could have been represented as

L[T(x„)] = ^ X, exp (~2nqx0) - 1/2J ,

but, as will be shown later, it is preferable to exclude the first term of the expansion from
the summation.

Applying Eq. (1) to the term inside the brackets in Eq. (4), we obtain

-^-,{l + sk:Le"d£ + e""'
f 1 , qxo _ (fitf B2m(2qx0)2m~1
|_2 6 90 945 (2m)!

(5)

where /"(0) = — e 2qi° for all n.
The inverse transform of Eq. (6) gives

T(x„) = " + 4t°2*'2 erfc - + 2ui' erfc - + J erfc - - ~ coV* +•••], (7)k LW w co o co 45 J

where
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The solutions suitable for long and short times respectively are [2]

T(x„) = [co2 + 1/3 - 4 E ^ , (8)

rfe) = ^-—2 co + 4co2 £ i' erfc ̂  J • (9)

The following table compares T(x0) as calculated from the first four terms of Eq. (7)
with the actual solution accurate to five significant figures for a range of values of 1/co2.

TABLE I
l/w2 k/Fxo T(xo) Eq. (7) k/Fx0 T(xo) Eq. (8) or (9)

0.1 10.333 10.333
0.2 5.3343 5.3333
0.5 2.3362 2.3333
1 1.3381 1.3333
2.0 .83580 .83188
5.0 .50546 .50516

10.0 .35683 .35684
100.0 .11284 .11284

It will be noted that the largest percentage error occurs in the intermediate range of
values of 1/co2, while the approximation to T(xn) is more accurate for both large and small
values of 1/co2. This occurs because for small values of 1/co2, or large values of time, the
approximation

E /(« + kh) = If f(x) dx + 1/2] (a)
k = 0 /I J a

is fairly accurate since h is small and /(°°) = 0. On the other hand, for large values of
1/co2, or small values of time, only the first term of the expansion is really significant,
since both EiT-o f(a + kh) and 1/h /" f(x) dx are small.

It is evident that the method described here can be used in other applications, where
the solution can be represented as XXo /(« + kh) though the accuracy of the approxima-
tion will vary from case to case, depending on the function.
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