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THE SMALL-FIELD THEORY OF THE JOULE AND WIEDEMANN EFFECTS*

BY
J. A. LEWIS
Bell Telephone Laboratories, Murray Hill, New Jersey

Abstract. The simplest stress-strain-field relations valid for an isotropic, magneto-
strictive medium are developed and applied to calculate the deformations of a wire in
the case of the Joule effect (longitudinal magnetic field) and Wiedemann effect (helical
magnetic field).

1. Introduction. Recently devices using the magnetostrictive effect, z.e., the
interaction between magnetic fields and mechanical deformations, have become in-
creasingly important, particularly in the field of digital computers. The “twistor”’ is
one example of such a device. Although it has been known for a long time, the magneto-
strictive effect apparently has been studied very little from the point of view of the
classical theory of the mechanics of continuous media. Two principal difficulties lie in
the way of such a general study; the essential nonlinearity of the effect and the hysteretic
behavior of most magnetic materials subjected to even moderately large fields. In the
present investigation the second difficulty has been bypassed by restricting the analysis
to reversible processes, i.e., to small fields.

Two effects in particular have received a large amount of attention in the literature.
The first of these, the so-called ‘Joule effect,” refers to the elongation (or contraction)
of a magnetostrictive wire in a longitudinal magnetic field. The othér, the Wiedemann
effect, refers to the twist produced by the combined action of longitudinal and circum-
ferential fields, the latter usually developed by a current in the wire.

In the following the most general stress-strain-field relations, governing the small
deformations of an isotropic, magnetostrictive material in a reversible magnetic field
are developed and applied to the Joule and Wiedemann effects.

2. General equations. The small motion of a continuous, magnetostrictive medium
is governed by the equations

Ti;.i = pu?, 2.1)
é,','],Hk,,' = D: + J.' 3 (2.2)
eiikEk,i = _‘B( . (2.3)

Equation (2.1), in which T';; is the stress tensor, p the mass density, and u; the particle
displacement, is the equation of motion for any continuous medium in the absence of
body forces. Equations (2.2) and (2.3), in which E, and H; are the electric and magnetic
field intensities, D; the electric displacement, B; the magnetic induction, and J, the
current density, are Maxwell’s equations, which must be adjoined to the equation of
motion in problems involving electromechanical interaction. Here and in the following,
we use commas to denote differentiation with respect to the Cartesian coordinates
(z; , z» , *;) and primes to denote differentiation with respect to the time. Repeated
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indices are to be summed over all values of the indices and the substitution tensor é;;
and the alternating tensor ¢,;; are given by

{1, for © = j,
5.',":'
0, for 7 3,

1, for %, j, k in cyclic order,
e = 4 —1, for 4, j, k in anticyclic order,
0, otherwise.

These equations are completed by the specification of appropriate boundary conditions
and of suitable constitutive relations between T;; , B, , D; , J; , and u; [or, more pre-
cisely, the strain S;; = 3(u:,, + u;..)], H; , E; . Relations valid for the small, reversible
deformations of an isotropic, magnetostrictive medium are derived in the following
sections, using the principle of conservation of energy and certain symmetry considera-
tions.

3. The conservation of energy. For any continuous medium the principle of the
conservation of energy may be expressed in the mathematical form

U =T,8,; +E:D:+ HB;+ J.E; — q.,; . 3.1)

This equation is obtained by equating the rate of increase of internal plus kinetic energy
in an arbitrary volume of the medium to the rate at which mechanical forces do work on
the volume and the rate at which thermal and electromagnetic energy flow into the
volume through its bounding surface. Both the equations of motion and Maxwell’s
equations have been used to reduce it to its present form. Furthermore, to avoid kine-
matic difficulties not pertinent to the present considerations, we have assumed that the
deformations are small. This is not essential, but simplifies the algebra considerably.

If we assume, by analogy with classical thermodynamics, that the dissipative terms
J:E; (ohmic heating) and ¢, ,; (heat conduction) are given in terms of an entropy density
function N and the temperature ©, by '

@N’ = J.'E,' — Qi,i (3.2)‘

then, in two special cases, we may show that Eq. (3.1) implies the existence of a so-called
““energy potential,” i.e., a scalar function ¥ such that

T,-,-=0F/GS.~,«, B;= —BF/GH,.

First we assume that N’ = 0, i.e., the medium is adiabatic. This might be closely approxi-
mated to by a medium with low electrical and thermal conductivity or in the considera-
tion of times so short that electrical and thermal diffusion has not taken place to an
appreciable extent (the dynamic problem). In this case, if U is assumed to be a function
of the strain S;, , the magnetic induction B, , and the electric displacement D, , the
ordinary “chain rule” of partial differentiation gives

T.',' = GU/BS., ) H; = GU/(')B. ) E,' = 3U/6D, (3.3)'

immediately from Eqgs. (3.1) and (3.2). The assumed functional dependence of U corre-
sponds to the assumption of reversibility or path independence. Only in this case may
we obtain an energy potential. For example, in the case of a viscous fluid, U depends
upon strain rate and Eq. (3.3) could not be obtained. '
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We next consider the isothermal case (® = const.), appropriate for times such that
thermal and electrical equilibrium has been reached (the static problem). In this case,
if we set ® = U — ON and again assume reversibility, we find

T,‘,' = OQ/BS., ) E{ = 6@/8D; ) H.’ = 3<I>/OB‘ . (3.4)

Obviously, the “derivation” given above is quite artificial. The strongest foundation
it has is that of expediency. Henceforth we shall assume the existence of a scalar energy
function W(S,; , H;) + W’(D;) such that

T.',' = 0W/GS.; ) B; = —8W/6H. ) E,- = 3W'/6D, . (3.5)
The function W + W’ is related to & by the expression
W+ W =& — H.B;. (3.6)

We have taken W to be a function of H, rather then B; simply as a matter of convenience
in the treatment of static problems. In the case of a reversible process this choice is at
our disposal.

4. The isotropic medium. The energy function W must, of course, be a proper
scalar function, that is, for given strain tensor S;; and field vector H, , its value must be
independent of the space coordinate system with respect to which their components are
defined. We may ensure that this be so by taking suitable scalar functions of S;; and H;
for the arguments of W. A convenient choice for these functions are the nine scalar or
contracted products, given by

_ (k) (m)
Qamy = Siiei €

_ )
by = He; ',

where the e{*"’s are three orthogonal unit vectors and the parentheses indicate that the
indices enclosed are not tensorial in character. We may imagine that these unit vectors
specify the orientation of the body with respect to the coordinate system in which S;;
and H, are defined. We then have

W = Wlaan , e , G@sy 5 Gazy » Gesy 5 Gasy 5 bay » bey 5 beay)

as the most general possible functional form of W. Clearly the value of W for fixed S;;
and H, depends upon the choice of ¢{*’, as one would expect, for example, in an anisotropic
medium. Usually one may restrict the above for a particular medium by taking advantage
of symmetries present, i.e., invariance under certain special classes of unit vectors. In
particular, an isotropic medium may be defined as one in which the value of W, for
fixed S;; and H; , is completely independent of the choice of the unit vectors e{*’. In this
case W may be taken as a symmetric function of the three principal strains S, and a
symmetric, even function of the projections of the field vector H; on the three principal
directions. The principal directions are given by three orthogonal unit vectors »{® such

that
S uPulm = {Sm , for k= m,
0, for k= m.
Thus we take the isotropic energy potential W in the form
w=wI,l,I,I,,I,I), 4.1)
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where the proper scalar invariants I, are given by
I, = 8Sq) + 8@ + S8& = S,
I, = fl) + Siz) + Sfa) = 8,8,
I, = 84 + S?z) + Sia) = 8818k
I, = S(:)hfl) + S(z)hﬁz) + S(s)h%w = 8,;H.H; ,
Is = ?1)h?1) + S%Z)hfz) + st)h?m = 8:;SuH H, ,
Is = ?1) + hfz) + hfa) = H.H,,

with h, the projection of H; on the k-th principal axis. It is easy to show that specifica-
tion of I, to I determines S, , Sy , Sy , ALy , hiey , bls, uniquely. Obviously, the I,’s
are symmetric functions, as required. They are also homogeneous in degree of S;; and
H; , which is convenient for approximation. We now assume that W is an analytic
function and expand it around S;; = H; = 0. We take W = T,; = B; = 0,
for S;; = H; = 0 and retain terms only up to order S*, SH?, H® in W, consistent with
our assumptions of small deformations and reversible fields. Then W takes the form

W = 3(\I} + 2GI,) + (mI,Is + 2nl,) — 3ul, , (4.2)

where A and G are elastic constants, m and n magnetostrictive constants, and u the
permeability constant. This yields the constitutive relations

T.;,' = GW/GS,, = ASkk 6;,' + 2GS,',' + mH,,H,, 6,',' + 2’nH.-H,- , (4:.3)
B,' = —BW/GH, = MH, - 2(’mS,,k 8i; + 2nS.~,~)H,~ . (4.4)

Equations (2.1), (2.2), (2.3), (4.3), and (4.4) form a complete set of equations describing
the small, reversible deformation of an isotropic, magnetostrictive medium. To illustrate
their application, we consider two simple cases of static deformation, namely the so-
called Joule and Wiedemann effects.

5. The Joule effect. A particularly simple case is the deformation of a magneto-
strictive wire produced by a constant longitudinal magnetic field H, = H, . All the
equations are then satisfied by assuming that the strains are constant and that the stresses
are zero. The strains can then be calculated directly from Eq. (4.1). In cylindrical polar
coordinates (r, 8, z) one finds

S,y = S = —[(1 — 2)m — 2m]H/E, (5.1)
8.. = —[(1 — 2vym + 2n]H;/E, (5.2)
where E is Young's modulus and » Poisson’s ratio, such that
AN=vE/Q14+»(1—2), G=E/21+4).
The components of magnetic induction are given in this case by
B, = By, = 0, (5.3)
B, = uH, + 2[2(1 — 2»)m® + (1 — 20)(m + 2n)* + 8m’|H}/E. (5.4)

Since for real materials 0 < » < %, Eq. (5.4) indicates that the magnetostrictive effect
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always augments the induction, independent of the signs of m and n, that is, for such
a body the B — H curve is always initially concave upward.

6. The current-carrying wire. Before discussing the effect of combined axial
magnetic field and current, i.e., the Wiedemann effect, we consider the deformations
produced by the current alone. The magnetic field produced by a constant longitudinal
current density J, is given by

H,=H,=0, Hy, = Jg/2. 6.1)
In this case the equation of motion, Eq. (2.1), assumes the vector form
grad [(A + 2G) divu + (m — n)H;] — G curl curlu = 0. (6.2)

A particular solution of this equation may be found easily by assuming that
u, = uy(r), Uy = u, = 0,
Then Eq. (6.2) is satisfied by setting
divu = 9(rue)/r dr = —(m — n)H;i/(\ + 2G) + const.,
giving ‘
u(r) = —(m — ny[Hy(r) — Hi@)]/4(\ + 20), (6.3)

where one integration constant has been chosen to make u,(a) = 0 and the other to
make u0(0) finite. The above constitutes a complete solution in the case where the wire
is constrained against both axial and radial motion. The radial tension required to keep
the radius fixed is

(T.). = (m + n)Hy(a)/2. (6.4)
The axial constraining tension, on the other hand, is given by
T, = —\(m — m2H}0) — Hi@]/20\ + 26) + mH30), 6.5)

and the total restraining tensile force by
T = 21rf rT,.(r) dr = wa’mH;(a)/2. (6.6)
0

If the distribution of axial stress at the ends of the wire differs from that given by Eq.
(6.5), the state of strain and magnetic field will be perturbed, but presumably this pertur-
bation dies away far from the ends, so that the field and displacement at the middle of a
wire of sufficient length is given by Eqs. (6.1) and (6.3), provided the total load is equal to
T.

To determine the displacements in the case of the free wire, we imagine radial and
axial loads equal and opposite to those given by Eqgs. (6.4) and (6.6) to be applied to the
wire. We find that the strains

S,. = Ses = u/r = —[(1 — 2)m + (1 — »)n]H;(a)/2E, 6.7
8., = dw/dz = —[(1 — 2y)ym — 2m)H}(a)/2E, (6.8)

must be added to the strains (8S,.)o = due(r)/dr, (Sss)o = ue(r)/r, (S..)o = 0, to obtain
the strain distribution in the free wire.
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7. The Wiedemann effect. Now we turn our attention to the deformations produced
by the combined action of the axial magnetic field H, = H, and the circumferential
magnetic field H, = Jor/2 produced by the current density J, = J, . The extensional
deformations S,, , Sss , S.. in this case can be calculated by simply superimposing the
solutions found in the previous sections, since Hy and H, appear in the equations for the
extensional stresses and strains only as squares and sums of squares, so that these equa-
tions are linear in their squares. The only new equation is that involving the product,
HH. ,ie.,

Ty. = 2G8,. + 2nH:H, , (7.1
where
Ss. = 3 dv/0z,
If we set
u(r,2) = erz, (7.2)
where ¢ is the twist per unit length, we find that
¢ = —nH,J,/G, (73)

makes Ty, identically zero. Thus, a constant twist per unit length, proportional to the
product of axial field and axial current, is produced by their combined action. In contrast
to the previous cases, this effect depends upon the direction of field and current.

As before, the divergence of the magnetic induction, calculated from Eq. (4.4),
vanishes. The average axial magnetic induction (B,), defined by

(B = 2 f rB.(r) dr,
0

is given by
(B.Y/H, = p+ [2(0 — 2)(m +n)* + (1 — 2)m* + 2(1 + 2)°][Hi(a) + 2HZ)/E. (7.4)

Again the average axial induction is augmented by the magnetostrictive effects.

8. Summary of results. In the following we list the elongation, radius change,
volume change, and magnetic induction in the case of the Joule effect, the current carry-
ing wire, and the Wiedemann effect.

1. The Joule Effect: (H, = Hy = 0, H, = H, = const.)
Elongation:

AL/L = —[(1 — 2)m + 2n]H}/E,
Radius change:

Aa/a = —[(1 — 2»)m — 2m]H/E,
Volume change:

AV/V = —(1 — 2»)(3m + 2n)H}/E,
Magnetic induction:

B, =B, =0,

BJH, = u + 2[2(1 — 2)(m 4+ n)* + (1 — 2)m* + 2(1 — 2’ |H2/E,
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II. The Current-Carrying Wire: (H, = H, = 0, Hy = Jor/2)
Elongation:

AL/L = —[(1 — 2»)ym — 2wn]Hj3(a)/2E,
Radius change:
Aa/a = —[(1 — 29)m + (1 — »)n]Hy(a)/2E,
Volume change:
AV/V = —(1 — 2»)(3m + 2n)Hj(a)/2E,

II1. The Wiedemann E ffect:
Elongation:

AL/L = —[(1 — 2v)ym — 2wm]Hy(a)/2E — [(1 — 2»)m + 2n]H}/E,
Radius change:
Aa/a = —[(1 — 2)ym + (1 — »m]Hy(a)/2E — [(1 — 2v)m — 2m]H:/E,
Volume change:
AV/V = —(1 — 2»)@3m + 2n)[Hj(a) + 2H;]/2E,
Twist per unit length:
¢ = nHyJ,/G,
Magnetic induction (average):
B,/H, = p+ [20 — 29)(m + n)* + (1 — 2»)m” + 2(1 + 2vn’][Hj(a) + 2H]/E.

9. Discussion of results. We have now obtained exact solutions describing the
deformation of the simplest magnetostrictive material under the action of a longitudinal
magnetic field (the Joule effect), a circumferential magnetic field, and a helical magnetic
field (the Wiedemann effect). The importance of these solutions lies not in their precise
forms, but in the fact that they are all derived from a single set of stress-strain-field
relations. These relations in turn are derived from a single scalar energy potenital,
involving five material constants, i.e., two elastic constants, the permeability constant,
and two magnetostrictive constants.

No attempt is made in the present analysis to relate the theory to microscopic
theories of magnetization or to generalize it to include irreversible processes. The object
is simply to demonstrate that even the simplest admissible description of magnetostriction
predicts both the Joule and Wiedemann effects.

In the case of the Joule effect, we have a constant longitudinal magnetic field and all
equations are satisfied by assuming the stresses to be identically zero and the strains
to be constant. The state of strain may be regarded as made up of two parts, a uniaxial
extension (or compression) parallel to the applied field and uniform dilation proportional
to the square of the magnitude of the magnetic field. This volume change is proportional
to 3m + 2n, where m and n are the two magnetostrictive constants. This combination of
constants then is the volume magnetostrictive constant. If it vanishes, magnetic fields
alone produce no volume change. This might be a useful approximation, since for many
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magnetostrictive materials the volume changes produced by the application of a mag-
netic field are considerably smaller than the extensions.

We note in passing that the stress-strain-field relations imply in general that at any
point where the stresses vanish one of the principal axes of strain coincides with the
direction of the magnetic field vector. In this case the strain consists of a uniform dilata-
tion (such as that produced by hydrostatic pressure) and a simple extension (or compres-
sion) in the direction of the field. One might suppose that one could always assume that
the stresses vanish, at least for problems where no surface forces are exerted on the body.
In this case the stress-strain-field relations would yield six linear equations for the six
components of the strain in terms of products and squares of magnetic field components.
However, the strains are required also to satisfy certain additional conditions, the
so-called “compatibility equations,” which are necessary and sufficient conditions that
the strains be those which a continuous body may undergo, i.e., that the strain be deriv-
able from a continuous displacement vector. One may exhibit cases in which these con-
ditions cannot be satisfied in the absence of stresses. In fact the current-carrying wire
is such a case. In this case, while the surface of the wire is free of tractions, there are,
nevertheless, nonzero stresses in its interior.

When the circumferential field produced by the current and the longitudinal field are
superimposed (the Wiedemann effect), extensions equal to the sum of the extensions in
the individual cases are produced in the axial and radial directions. Besides these strains,
a torsional strain proportional to the product of axial and circumferential field strength
is produced. The extensions produced by the longitudinal field and by the current tend
to cancel one another, so that one would expect to observe smaller extensions in the
case of the Wiedemann effect than in the case of the Joule effect.



